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PREFACE TO THE
SECOND EDITION

Because the first edition of this book was well reccived by the academic and
engineering community, a special attempt was made in the second edition to
include only those changes that seemed to clearly improve the book's usc in the
classroom. Most of the modifications were included only after obtaining input
from several users of the book.

Except for a few minor corrections and additions, just six significant changes
were made. Only two, a new section on the central limit theorem and one on
gaussian random processes, represent modification of the original text. A third
change, a new chapter (10) added at the end of the book, scrves 1o illustratc a
number of the book’s theoretical principles by applying them to- problems
encountered in practice. A fourth change is the addition of Appendix F, which is
a convenient list of some uscful probability densities that are often encountered.

The remaining.two changes are probably the most significant, especially for
instructors using the book. First, the number of ecxamples that illustrate the
topics discussed has been increased by about 30 percent (over 85 examples are
now included). These examples were carefully scattered throughout the text in an
efTort to include at least one in each section where practical to do so. Second,
over 220 new student excrcises {(problems) have been added at the ends of the
chapters (a 54 percent increase).

The book now contains 630 problems and a complete solutions manual is
available to instructors from the publisher. This addition was in response to in-
structors that had used most of the exerciscs in the first cdition. For these instruc-
tors’ convenience in identifying the new problems, they are listed in each chapter
as “Additional Problems.”
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xiy PREFACE TO THE SECOND EDITION

All other aspects of the book, such as ils purpose (a textbook), intended
audience (juniors, seniors, first-year graduate students), level, and style of presen-
tation, remain as before.

I would like to thank D. L Starry for her excellent work in typing the manu-
script and the University of Florida for making her services available. Finally, 1
am again indebted to my wile, Barbara, for her selfless efforts in helping me

proofread the book. If the number of in-print errors is small, it is greatly due to
her work.

Peyton Z. Peebles, Jr,

TYRUTT ORI S

RIS

PREFACE TO THE
FIRST EDITION

This book has been written specifically as a textbook with the purpose of intro-
ducing the principles of probability, random variables, and random signals to
either junior or senior engineering students,

The level of material included in the book has been selected to apply to a
lypical undergraduate program, However, a small amount of more advanced
malerial is scattered throughout to serve as stimulation for the more advanced
student, or to fill out course content in schools where students are at a more
advanced level. (Such topics are keyed by a star *) The amount of material
included has been determined by my desire to fit the tex{ to courses of up to onc
semester in length. (More is said below about course structure.)

The need for the book is easily established. The engineering applications of
probability concepts have historically been taught at the graduate level, and
many excellent texts exist at that level. In recent times, however, many colleges
and universitics are introducing these concepts into the undergraduate curricula,
especially in electrical engineering, This fact is made possible, in part, by refine-
ments and simplifications in the theory such that it can now be grasped by junior
or senior engineering students. Thus, there is a definite need for a text that is
clearly written in a manner appealing to such students. I have tried to respond to
this need by paying careful attention to the organizalion of the contents, the
devclopment of discussions in simple language, and the inclusion of text examples
and many problems at the end of each chapter. The book contains over 400
problems and a solutions manual for all problems is available to instructors from
the publisher,

Many of the examples and problems have purposely been made very simple
in an eflort to instill a sense of accomplishment in the student, which, hopefully,
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will provide the encouragement to go on (o the more challenging problems.
Although emphasis is placed on examples and problems of electrical engincering,
the concepls and theory arc applicable to all arcas of cngincering,

The International System of Units (SI) has been used primarily throughout
the text. However, because technology is presently in a transitional stage with
regard to mecasurements, some of the more established customary units (gallons,
°F, ctc.) arc also utilized; in such instances, values in SI units follow in paren-
theses. ’

The student background required to study the book is only that typical of
junior or senior engincering students. Specifically, it is assumed the student has
been introduced to multivariable calculus, Fourier scries, Fourier transforms,
impulsc functions, and some Jincar system theory (transfer function concepts,
especially). 1 recognize, however, that students tend to forget a fair amount of
what is initially taught in many of thesc arcas, primarily through lack of
apportunity to apply the material in later courses. Therefore, | have inserted
short reviews of some of these required topics. These reviews are oceasionally
included in the text, but, for the most part, exist in appendixes at the end of the
book.

The order of the material is dictated by the main topic. Chapter | introduces
probability from the axiomatic definition using set theory. In my opinion this
approach is morc modern and mathematically correct than other definitions. Tt
also has the advantage of creating a better base for students desiring to go on to
graduate work, Chapter 2 introduces the theory of a single random variable.
Chapter 3 introduces operations on onc random variable that are bascd on sta-
tistical expectation. Chapter 4 cxtends the theory to several random variables,
while Chapter § defines operations with scveral variables. Chapters 6 and 7 intro-
duce random processes. Definitions based on temporal characterizations arc
developed in Chapter 6. Spectral characterizations are inciuded in Chapter 7.

The remainder of the text is concerned with the response of linear systems
with random inputs, Chapler 8 contains the general theory, mainly for lincar
time-invariant systems; while Chapter 9 considers specific opltimum systems that
cither maximize system outpul signal-lo-noise ratio or minimize a suitably
defined average error.

Finally, the book closes with a number of appendixes that contain material
helpful to the student in working problems, in reviewing background topics, and
in the interpretation of the text.

The bodk can profitably be used in curricula bascd on cither the quarter or
the semester system. At the University of Tennessce, i one-quarter undergraduate
course at the junior level has been successfully taught that covers Chapters 1
through 8, cxcept for omitting Sections 2.6, 3.4, 4.4, 8.7 through 8.9, and all
starred malerial. The class met three hours per week.,

A one-semester undergraduate course (threc hours per week) can readily be
structured to cover Chapters 1 through 9, omitting all starred material except
(hat in Sections 3.3, 5.3, 7.4, and 8.6.

Although the text is mainly developed for the undergraduate, 1 have also
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VREFACS TO THE FIRST &DiTION xvii

successfully used it in a one-quarter graduate course (first-year, three hours per
week) that covers Chapters 1 through 7, including all starred material.

It should be possible to cover the enlire book, including all starred material,
in a one-semester graduate course (first-year, threc hours pet week).

I am indebted to many people who have helped make the book possible. Drs.
R. C. Gonzalez and M. O. Pace read portions of the manuscript and suggested a
number of improvements. Dr. T. V. Blalock taught from an early version of the
manuscript, independently worked 'a number of the problems, and provided
various improvements. 1 also extend my appreciation to the Advanced Book
Program of Addison-Wesley Publishing Company for allowing me to adapt and
usc several of the figures from my earlier book Communication System Principles
(1976), and to Dr. J. M. Googe, head of the clectrical engincering department of
the University of Tennessee, for his support and encouragement of this project.
Typing of the bulk of the manuscript was ably done by Ms. Belinda Hudgens;
other portions and various corrections were lyped by Kymberly Scott, Sandra
Wwilson, and Denise Smiddy. Finally, I thank my wife, Barbarn, for her aid in
proofrcading the entire book.

Peyton Z. Peebles, Jr.
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CHAPTER

ONE
PROBABILITY

1.0 INTRODUCTION TO BOOK AND CHAPTER

The primary goals of this book are to introduce the reader to the principles of
random signals and to provide tools whereby one can deal with systems involv-
ing such signals. Toward these goals, perhaps the first thing that should be done
is define what is meant by random signal. A random signal is a time waveformt
that can be characterized only in some probabilistic manner, In general, it can be
either a desired or undesired waveform.

The reader has no doubt heard background hiss while listening to an ordi-
nary broadcast radio receiver. The waveform causing the hiss, when observed on
an oscilloscope, would appear as a randomly fluctuating voltage with time, It is
undesirable, since it interferes with our ability to hear the radio program, and is
called noise.

Undesired random wavelorms (noise} also appear in the outputs of other
types of systems. In a radio astronomsr’s receiver, noise interferes with the
desired signal from outer space (which itsell is a random, but desirable, signal). In
a television system, noise shows up in the form of picture interference often called
“snow.” In a sonar system, randomly generated sea sounds give rise to a noisc
that interferes with the desired echoes. .

The number of desirable random signals is almost limitless. For example, the
bits in a computer bit stream appear to fluctuate randomly with time between the

t We shall usually assume random signals 1o be voltage-time waveforms. However, the theory to
be developed throughout the book will apply, in most cases, to random functions other than voltage,
of arguments other than time.
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2 PRODABILITY, RANDOM VARIADLES, AND RANDOM SIGNAL PRINCIPLES

zero and one states, thereby creating a random signal. In another example, the
output voltage of a wind-powered generator would be random because wind
speed Nuetuates randomly. Similarly, the voltage from a solar detector varics ran-
domly due to the randomness of cloud and weather conditions. Still other exam-
ples arc: the signal from an instrument designed to measure instantancous ocean
wave height; the space-ariginated signal at the output of the radio astronomer's
antenna {the relative intensity of this signal from space allows the astronomer {0
form radio maps of the heavens); and the vollage from a vibration analyzer
attached o an automobile driving over rough terrain,

In Chapters § and 9 we shall study methods of characterizing systems having
random input signals. However, from the above examples, it is obvious that
random signals only represent the behavior of more fundamental underlying
random phenomena. Phenomena associated with the desired signals of the last
paragraph arc: information source for computer bit stream; wind speed; various
weather conditions such us cloud density and size, cloud speed, elc.; occin wave
height; sources of outer spice signals; and terrain roughness. All these phenom-
ena must be deseribed in some probabilistic way.

Thus, there are actually two things to be considered in characlerizing
random signals. One is how (o describe any one of a varicty of random phcnom-
ena: another is how to bring time into the problem so as to creale the random
signal of interest. To accomplish the first item, we shall introduce mathematical
concepls in Chapters 2, 3, 4, and 5 (random variables) that are suficiently general
they can apply to any suitably defined random phenomena. To accomplish the
seeond item, we shall introduce another mathematical concept, called a random
process, in Chapters 6 and 7. All these concepts are bascd on probability theory.

The purpose of this chapter is to introduce the clementary aspects of prob-
ability theory on which all of our later work is based. Scveral approaches exist
for the definition and discussion of probability. Only two of these are worthy of
modern-day consideration, while all others are mainly of historical intcrest and
are not commented on further here. Of the more modern approaches, onc uses
the relative frequency definition of probability. Tt gives a dcgree of physical
insight which is popular with engincers, and is often uscd in texts having prin-
cipal topics other than probability theory itsclf (for cxample, sce Pecbles, 1976).1

The second approach to probability uses the axiomatic definition. 1t is the
most mathematically sound of all approaches and is most appropriate for a text
having its lopics based principally on probability thcory. The axiomatic
approach also scrves as the best basis for readers wishing to proceed beyond the
scope of this book ta more advanced theory. Becausc of these facts, we adopt the
axiomatic approuch in this book.

Prior to the introduction of the axioms of probability, it is nccessary that we
first develop certain elements of st theory.f

+ References are quoted by name and date of publication. They are tisted at the end of the hook.
$ Our treatment is limited to the level required to introduce the desired probability concepts. For
additional details the reader is referred 1o McFadden (1963), or Milton and Tsokos (1976).

S

PROBABILITY 3
1.1 SET DEFINITIONS '

A set is a collection of objects. The objects are called elements of the set and may

. abe anything whatsoever. We may have a sct of voltages, a set of airplanes, a set of

.

chairs, or even a scl of sets, called a class of sets. A set is usually denoted by a
capilal letter while an clement is represented by a lower-case letter. Thus, il ais
an clement of sct A4, then we write

ae A (1.1-1)

If u is not an clement of A, we write

ad A (1.1-2)

A set is specified by the content of two braces: {-}. Two methods exist for
specifying content, the tabular method and the rule method. In the tabular
method the clements are cnumerated explicitly. For example, the set of all in-
tegers between § and 10 would be {6, 7, 8, 9}. In the rule method, a set’s content
is determined by some rule, such as: {integers .between 5 and 10}.t The rule
method is usually more convenient to use when the set is large. For example,
{integers from 1 to 1000 inclusive} would be cumbersome to write explictly using
the tabular method.

A sel is said to be countable if its clements can be put in one-to-one corre-
spondence with the natural numbers, which are the integers 1, 2, 3, etc. Il a set is
not countable it is called uncountable. A set is said to be empty if it has no ele-
ments. The empty sct is given the symbol & and is often called the null set.

A finire set is onc that is cither emply or has elements that can be counled,
with (he counting process terminating. In other words, it has a finite number of

_ clements. If a set is not finite it is called infinite. An infinite set having countable

clements is called countably infinite.
If every element of a set A is also an element in another set B, A is said to be
contained in B. A is known as a subset of B and we write

\ AcB (1.1-3)

If at least one element e;(ists in B which is not in A, then A is a proper subset of B,
denoted by (Thomas, 1969)

AcB (1.1-4)

The null set is clearly a subset of all other sets.
Two sels, A and B, are called disjoint or mutually exclusive if they have no

common clements. I i - . :
OV =N \\L e ) — 41l [ ¢
’ " B

t Sometimes notations such as {I|S </ <10,/ an integer) or {115 <1 < 10, / an integer} are
seen in the literature.
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4 PRODAUIL.ITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

Examplevl.l-l To illustrate the topics discussed above, we identify the sets
listed below.

A={1,3,57)
B=1{1,23..)
C={05<c<85)

D = {0.0}
E={24,68, 10,12, 14)
F={-50<f< 120}

The set A is tabularly:specified, countable, and finite. B is also tabularly
specified and countable, but is infinite. Set C is rule-specified, uncountable,
and infinite, since it contains «ll numbers greater than 0.5 but not exceeding
8.5. Similarly, sets D and E are countably finite, while set F is uncountably
infinite. It should be noted that D is not the null set; it has one element, the
number zero. !

.Set A is contained in sets B, C, and F. Similarly, C< F, D < F, and
E < B. Sets B and F are not subsets of any of the other sets or of each other.
Sets 4, D, and E are mutually exclusive of each other. The reader may wish
to identify which of the remaining sets are also mutually exclusive,

The largest or all-encompassing set of objects under discussion in a given
situation is called the universal set, denoted S. All sets (of the situation
considered) are subsets of the universal set. An example will help clarify the
concept of a universal set.

Example 1.1-2 Suppose we consider the problem of rolling a die. We are
interested in the numbers that show on the upper face. Here the universal set
is S={1,2, 3,4, 5 6}. In a gambling game, suppose a person wins il the
number comes up odd. This person wins for any number in the set 4 =

{1, 3, 5}. Another person might win if the number shows four or less; that is,

for any number in the set B = {1, 2, 3, 4},
Observe that both A and B are subsets of S. For any universal set with N

elements, there are 2V possible subsets of §. (The reader should check this for -

a few values of N.) For the present gxample, N = 6 and 2" = 64, so that there
are 64 ways one can define * winning” with one die.

It should be noted that winning or losing in the above gambling game is
related to a set. The game itself is partiaily specified by its universal set (other
games typically have a different universal sct). These facts are not just coin-
cidence, and we shall shortly find that sets form the basis on which our study of
probability is constructed.

PROBABILITY S

Figure 1.2-1 Venn diagrams. (a) lllustration
of subsets and mutually exclusive seis, and
(b) illustration of intersection and union of
sets. [Adapted from Peebles,(1976) with permis-
sion of publishers Addison-Wesley, Advanced
Book Program.)

1.2 SET OPERATIONS

In working with sets, it is helpful to introduce a geometrical representation that
cnables us to associate a physical picture with sets.

Yenn Diagram

Such a representation is the Venn diagram.t Here scts are represented by closed-
planc figures. Elements of the sets are represented by the enclosed points (arca).
Thé universal set S is represented by a rectangle as illustrated in Figure 1.2-1a.
Three sets 4, B, and C are shown, Set C is disjoint from both A and B, while set
B is a subset of A4.

Equality and Difference

Two scts A and B are equal if all elements in A are present in B and all elements
in B arc present in A; that is, if 4 € Band B < A. For cqual sets we writc 4 = B,
The difference of two sets 4 and B, denoted A — B, is the set containing all

t After John Venn (1834-1923), an Englishman.




6 PROBABILITY, RANDOM VARIADBLES, AND RANDOM SIGNAL PRINCIPLES

clements of 4 that are not present in B. For example, with 4 = {0.6 <a < 1.6}
and B={1.0sh <25}, then A-B={06<c< 10)or B—A= {l6<d<
2.5). Note that A — B # B — A.

Union and Intersection
The union (call it C) of two scts A and B is written
C=AvuD

It is the set of all elements of A or B or both. The union is sometimes called the
stom of two sets.
The intersection (call it D) of two sets A and B is written

D=ANB (1.2-2)

1t is the set of all clements common (o both A and B. Interscction is somelimes
called the product of two scts. For mutually exclusive sets A and B, AnB=¢.
Figurc 1.2-1b illustrates the Venn diagram area to be associated with the intersec-
tion and union of scts..

By rcpeated application of (1.2-1) or (1.2-2), the union and intersection of N
scts A,, n = 1,2,..., N, become

N
C=A,udyu-—udy=1)4,

(1.2-3)

N
D=A,n Ay ndy= ()4, (1.2-4)

am=]
Complement
The complement of a sct A4, denoted by A, is the set of all clements not in A. Thus,
A=8—-A (1.2-5)
It is also casy to scc that F=58=a, AV A=S,and An A=

Example 1.2-1 We illustrate interscction, union, and complement by taking
an example with the four scts

B=1{26782910, i1}
C={1,34678)

S = {1 < integers S 12}
A=1{1,3512}
Applicable unions and interscctions here arc:
AuB={,2356713859, 10, 11, 12}
AvuC={1,3456138, 12}
BucC={23 4,6,7,89 10, 11}

AnB=0
AnC={1,3}
BnC={67,8}

(12-1)

| £
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A2

Figure 1.2-2 Venn diagram applicable to
Example 1.2-1.

Complements are:

- A=1{2,4,6,172891011}
B={1,34512}
C=1{2529101], 12}
The various sets are illustrated in Figure 1.2-2.

Algebra of Sets

All subsets of the universal set form an algebraic system for which a number of
theorems may be stated (Thomas, 1969). Three of the most important of these
relate to laws involving unions and intersections. The commutative law states that

AnB=BnA (1.2-6)
AuB=BuUA (1.2-7)

. The distributive law is written as
' ARBUCO=(ANnBUAAC (1.2-8)
AUBAC=(AuB N4V (1.2-9)

The associative lal)‘v is written as
'.‘(AUB)UC=AU(BUC)=AUBUC (1.2-10)
AnBAC=An(BnC)=AnBnC (1.2-11)

These are just restatements of (1.2-3) and (1.2-4).

De Morgan’s Laws

By usc of a Venn diagram we may readily prove De Morgan's lawst, which state
that the complement of a union (intersection) of two sels A and B cquals the
intersection (union) of the complements A and B. Thus,

v B
AnB

=

(1.2-12)
(1.2-13)

v
i

‘A_nB
AuB

—_
=
i

t Afier Augustus De Morgan (1806-1871), an English mathematician.
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From the last two cxpressions one can show that if in an identity we replace,

unions by intersections, inlersections by unions, and sets by their complements,
then the identity is preserved (Papoulis, 1965, p. 23).

Example 1.2-2 We verify De Morgan's law (1.2-13) by using the example scts
A={2<ax16) and B={5<b <22} when § = {2 <s < 24}, First, if we
define C = A n B, the reader can readily see from Venn diagrams that
C=AnB={5<c<g16}soC=AnB={2<c<5 16 <c<24}. This
result is the left side of (1.2-13).

Second, we compute A=S—-A={16<a<24} and B=S—B=
{2<b<5, 22<bsg24), Thus, C=AuUuB={2<c¢<5 16<c<24),
This result is the right side of (1.2-13) and De Morgan’s law is verified.

Duality Principle

Tl\i§ prinf:iple (Papoulis, 1965) states: if in an identity we replace .unions by inler-
sections, intersections by unions, $ by &, and & by S, then the identity is pre-
served. For example, since

ANnBul=(AnBudn0 (1.2-14)
is a valid identity from (1.2-8), it follows that
AuBnNnC=(AuBn(du ) (1.2-15)

is also valid, which is just (1.2-9).

1.3 PROBABILITY INTRODUCED THROUGH SETS

Basic to our study of probability is the idea of a physical experiment. In this
section we develop a mathematical model of an experiment. Of course, we arc
interested only in cxperiments that are regulated in some probabilistic way. A
single performance of the experiment is called a trial for which there is an
outcome.

Experiments and Sample Spaces

Although there exists a precise mathematical procedure for defining an experi-.
ment, we shall rely on reason and examples. This simplified approach will ulti-
mately lead us to a valid mathematical model for any real experiment.t To

t Most of our early definitions involving probability are rigorously established only through con-
cepts beyond our scope. Although we adopt u simplified development of the theory, our finn! results
are no less valid or useful than if we had used the ndvanced concepts.

PrROBALITY Y

illustrate, one experiment might consist of rolling a single dic and observing the
number that shows up. There are six such numbers and they form all the possible
outcomes in the experiment. If the dic is “unbiased " our intuition tells us that
cach outcome is cqually likely to occur and the likelihood of any one oceurring is
' (later we call this number the probability of the outcome). This experiment is
seen Lo be governed, in part, by (wo sets. One is the set of all possible outcomes,
and the other is the set of the likelihoods of the outcomes. Each set has six cle-
ments. For the present, we consider only the set of outcomes,

The set of all possible outcomes in any given experiment is called the sample
space and it is given the symbol S. In effect, the sample space is a universal set for
the given experiment. S may be different for different experiinents, but all experi-
ments are governed by some sample space. The definition of sample space forms
the first of three clements in our mathematical model of experiments. The remain-
ing clements are events and probability, as discussed below.

Discrete and Continuous Sample Spaces

In the carlier dic-tossing cxperiment, $ was a finite set with six clements. Such
sumple spaces ure said to be diserete and finite, The sample space enn also be dis-
crete and infinite for some cxperiments. For example, § in the experiment
“choose randomly a positive integer " is the countably infinite set {L,2,3 ..}

Some experiments have an uncountably infinite sample space. An itlustration
would be the experiment * oblain a number by spinning the pointer on a wheel of
chance numbered from 0 to 12." Here any number s from 0 to 12 can result and
$ = {0 < s < 12}. Such a sumple space is called continvous.

Events

In most situations, we are interested in some characteristic of the outcomes of our
experiment as opposed to the outcomes themselves. In the experiment “draw a
card from a deck of 52 cards,” we might be more interested in whether we draw a
spade as opposed to having any interest in individual cards. To handle such situ-
ations we define the concept of an event,

An event is defined as a subset of the sample space. Because an event is a set,
all the carlier definitions and operations applicable to sets will apply to events.
For example, il two evenls have no common outcomes they are mutually
exclusive.

In the above card experiment, 13 of the 52 possible outcomes are spades.
Since any one of the spade outcomes satisfies the event “draw a spade,” this
cvent is a set with 13 clements. We have carlier stated that a set with N clements
can have as many as 2% subscts (events defined on a sample space having N
possible outcomes). In the present example, 27 = 2°2 = 4.5(10"%) events.

As with the sample space, events may be either discrete or continuous, The
card event “draw a spade” is a discrete, finite event. An example of a discrete,
countably infinite cvent would be “sclect an odd integer™ in the experiment

o
'll{
{
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- B
“randomly sclect a positive integer.” The cvent has @ countably infinite number ‘ probability of the event equallo the union of any number of mulually exclusive
, of clements: {1, 3, 5, 7, ...}. However, cvents defincd on a coulably infinite sample ' cvents is cqual to the sum of “? individu:'\l cvent _me“h“'“c“~ _ :
: space do nol have to be countably infinite. The event {1, 3, 5, 1} is clearly not An example should help jve a physical pictire of the meaning of the above
infinite bul applics to the integer sclection experiment. n  Aaxioms.
Events defined on conlinuous sample spaces arc usually continuous. In the ‘
’ cxperiment *choose randomly a number a from 6 to 13, the sample space is ¢ Example 1.3-1 Let an ciperiment consist of obtaining a number x by spin-
. S = {6 <5 < 13). An event of interest might cor'rcqund 1o the chosen number { n‘ing the p;)inlcr on a “lair” whccl'of‘ chirce that is labcled from 0 10 100
l':\\\mgi:::::;:c:]c.:land 1.6; l:mt l;, (h: c‘z_vcr;l (call it A)‘IS A= {~7.4 <I a < 1.6} N poinls.- The san?plc spacis S = (0<x< 1(})}_ We rcason that probability of
s may also be defined on continuous sample spaces. An At the pointer (alling betw:en any (Wo numben X3 2 X should be (x; — x,)/100
example of'such an cvent is A = {6.13692} for the sumple space § = {6 <5 = 13} 4 since the wheel is fair. As a check on this assignmenl, we sce that the event
of the previous paragraph. We comment later on this type of event. t A={x, <x<x } sa}isﬁcs axiom 1 for all x and x,, and axiom 2 when
The above definition of an cvenl as a subset of the sample space forms the X, = 10'0 and x .2_,_ 0 - o
sccond of three elements in our mathematical model of experiments. The third % o Now ‘suppc;sc w'e break the wheel's periphery into N contiguous scg-
clement involves defining probability. } ments A, = {X.-1 <X S Xo)y Xp = (MI0O/N, n =1, 2, ..., N, with xo = 0.
1 Then P(A4,) = I/N, and, for any N,
Probability Definition and Axioms s! P(O py > _ i P(A,) = % L=
To cach cvent defined on a sample space S, we shall assign a nonncgative numbcer k n=t nel et N
called probability. Probability is thercfore a function: it is a function of the cvents 3 from axiom 3.
defined. We adopt the notation P(A)t for *the probability of event A" When an i -
cvent is stated explicitly as a set by using braces, we employ the notation P{-} ' L . .
instead of P({*})- Example l.3tl allows us to return to our ea.rllcr discussion of dilscrclc events
The assigned probabilitics are chosen so as to satisfy three axioms. Let A be ' defincd on continuous sample spaces. If the interval X, = Xa-1 I8 aliowed to
‘ any event defined on a sample space S. Then the first two axioms are : ﬂPPFOﬂ{:l} zero (— 0),.thc propablllty P(A,)~ P(x,,);_ that 1s,.P(A,,) becom.cs lh‘c o
probability of the pointer falling exactly on the potnt X,. Since N — co in this \_%
axiom 1: P(A) =20 (1.3-1a) ¢ situation, P(4,)— 0. Thus, the probability of a discrete cvent defined on a contin- '}1
axiom 2: Ps) = | (13-1h) uous sample space is 0. This fact is true in gepcral. ‘ ‘ "":3
‘ " : A consequence of the above statement is that events can occur even if their B
The first only represents our desire 10 work with nonncgative numbers. The probability is 0. Intuitively, any number can be 0_"““""“' from the wheel of ‘
sccond axiom recognizes that the sample space itsclf is an event, and, since il is chance, but that precise number may never occur again. The infinite sample space
the all encompassing cvent, it should have the highest possible probability, which has only one outcome satisfying such a discrete cvent, SO It probability is 0. Such
. is sclected as unity. For this reason, S is known as the certain event. Alternatively, - events are not the sume as the impossible event which has 1o clements and cannot
the null set & is an event with no elements; it is known as the impossible event occur. The converse situation can also happen where evenls with probability 1
and its probability is 0. may not occur. An‘example for the wheel of chance cxpf:nment wqgld be the
l “The third axiom applics to N cvenls Agn=12...,N, where N may possi- cvent A = {all numbers except the number x,}. Events with probability 1 (that
may not occur) are not the same as the certain event which must occur.

bly be infinite, defincd on a sample space S, and having the property 4, N A, =

& for all m # n. 1tis .
Mathematical Model of Experiments

N N
axiom 3: "(H"*) = ";P(An) it Ann A= (13- The axioms of probability, introduced above, complele our mathematical model
. $ of an experiment. We pause to summarize. Given some real physical experiment
foral m#n=1,2 .. N, with N possibly infinite. The axiom statcs that the . having a set of particular outcomes possible, we first defined a sample space to
\ mathematically represent the physical outcomes. Second, it was recognized that

certain characteristics of the outcomes in the real experiment were of interest, as
oppused to the outcomes themselves; events were defined to mathematically

1 Occasionally it will be convenicnt to use brackets, such as PLA] when Als itself an cvent such as
C -
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represent these characteristics. Finally, probablities were assigned to the defined
events to mathematically account for the randon nature of the experiment.

Thus, a real experiment is defined mathemaically by three things: (1) assign-
mc.n‘t of a ‘samplc space; (2) definition of events of interest; and (3) making prob-
ability assignments to the events such that the axioms are satisfied. Establishing

the correct model for an expsriment is probably the single most difficult step in
solving probability problems.

Exan?ple 1.3-2 An experiment consists of obstrving the sum of the numbers
showxpg up when two dice are thrown. W develop a model for this
experiment, '

The sample space consists of 62 = 36 points as shown in Figure 1.3-1,
Each possible outcome corresponds to a sum having values from 2 to 12.

Suppose we are mainly interested in thrse events defined by 4 =
{sum =7}, B={8<sum <11}, and C = {10 <sum}. In assigning proba-
bilities to these events, it is first convenient to define 36 elementary events
Ay = {sum for outcome (j, J) =i+ j}, where i represents the row and j repre-
sents the column locating a particular possible oulcome in Figure 1.3-1. An
clementary event has only one element. ‘

For probability assignments, intuition indicates that each possible out-
i:on;c has the same likclihqod ol occurrence if the dice are fair, so P(4,) =
frs Itlow because the evenfs 4, i and j=1, 2, ..., N =6, are mulu}ully
c.xcluswc. they must satisly exiom 3. But since the events A, B, and C are
snm.ply the unions of appropriate clementary events, their probabilities are
derived from axiom 3. From Figure 1.3-1 we easily find

6 6
P(A) = P(UA,',_J = Y P4, ,.)= 6(—1-) =1
1=y (=1 6

36
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As a matter of interest, we also observe the probabilitics of the cvents
BAC and BUC to be PB n C)= 2(he)="s and P(BuU ()=

10('/s6) = Yrs-

1.4 JOINT AND CONDITIONAL PROBABILITY

In some experiments, such as in Example 1.3-2 above, it may be that some cvents
are not mutually exclusive because of common elements in the sample space.
These elements correspond to the simultaneous or joint occurrence of the non-
exclusive events, For two events 4 and B, the common elements from the cvenl
A n B

Joint Probability

The probability P(4 ~ B) is called the joint probability for two events A and B
which intersect in the sample space. A study of a Venn diagram will readily show
that

P(A n B) = P(A) + P(B) — P(A v B) (1.4-1)
Equivalently,
P(A U B) = P(A) + P(B) — P(A n B) < P(A) + P(B) (1.4-2)

In other words, the probability of the union of two events never exceeds the sum
of the event probabilities. The equality holds only for mutually exclusive events
because 4 N B = &, and therefore, P(4 n B) = P(J) = 0.

Conditional Probability

Given some event B with nonzero probability

P(B)>0 (1.4-3)
we deline the conditional probability of an event A, given 3, by
P(A n B)
(4] B) = ——— 1.4-4
PAIB) = = (1.4-4)

The probability P(A41 B) simply reflects the fact that the probability of an event A4
may depend on a second event B. If 4 and B are mutually exclusive, A n B = (&,
and P(A| B) = 0. )

Conditional probability is a defined quantity and cannot be proven,
However, as a probabilily it must satisfy the three axioms given in (1.3-1). P(4 | B)
obviously satisfics axiom | by its definition because P(4 n B) dnd P(B) are non-
negative numbers. The second axiom is shown to be satisfied by letting § = A4:

P(S| B) =—-—W=F‘(-E)'= 1 (1.4-5)
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!
The third axiom may be shown to hold by considering the union of 4 with an
event C, where A and C are mutually exclusive. If P(4 v C|B) = P(A| D) + A
P(C| B) is true, then axiom 3 holds. Since 4 n C = & thea cvenls An Band
B ~ C are mutually cxclusive (use a Venn diagram to verify this fact) and

P4 U C) A B] = P{(A A B U (CnB)=PANB+PCA B)

(1.4-6)
Thus, on substitution into (1.4-4)
_ P[4 v C)nB] PAn B) P(Cn B)
P4 © OBl == =7 1@ P(B)
= P(A|B) + P(C|B) (1.4-7)

and axiom 3 holds.

Example 1.4-1 In a box therc are 100 resistors having resistance and toler-
ance as shown in Table 1.4-1. Let a resistor be selected from the box and
assume each resistor has the same likelihood of being choscn. Define three
cvents: A as “draw a 47-Q resistor,” B as “draw a resistor with 5% toler-
ance,” and C as “draw a 100-Q resistor.” From the table, the applicable

probabilities arct

44
P(A) = P47 Q) = T00

P(B) = P(5% -2
)= 7 100

P(C) = P(100 Q) = T3625
The joint probabilitics are
P(A nB)=P(47Qn5%)=—2§-
100
P(AnC)=PATQA100Q)=0

24
= P(5% 1) = ——
P(B A C) = P(5% n 100 ) = =&

abilitics are related to the number of resistors in the box that salisfy an
be selected. An alternative appronch would be based on
ample 1.3-2. The reader may view the latter approach as

tItis reasonable thut prob:
event, since each resistor is equally likely to
clementary events similar to that used in Ex
morc rigorous but less readily applied.

A
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Table 1.4-1 Numbers of resistors

in a box having given resistance and

tolerance.
Tolerance
Resistance (£1) 5% 10% Total
22 10 14 24
47 28 16 44
100 24 8 32
Total 62 ki 100

By using (1.4-4) the conditional probabilities become

A
P(A|B)=__——P(P(’;)B)=%%
P(AnC
P(A|C)=—(—P(——2)———)=o
L PBAC) 24
P(B|C)=—(—R%)—2=§§

P(A|B) = P(47 Q|5%) is the probability of drawing a 47-Q resistor given
that the resistor drawn is 5%. P(4|C) = P(47 100 Q) is the probability
of drawing a 47-Q resistor given that the resistor drawn is 100 Q; this is
clearly an impossible event so (he probability of it is 0. Finally,
P(B|C) = P(5%100 Q) is the probability of drawing a resistor of 5% toler-
ance given that the resistor is 100 Q.

Total Probability :

The probability .P(A) of any event A defined on a sample space S can be
expressed in terms of conditional probabilities. Suppose we are given N mutually
exclusive events B,,n=1,2,..., N, whose union equals S as illustrated in Figure

1.4-1. These events satisfy

B,nB, = meEn=12 ... N (1.4-8)
N
UBu=S (1.4-9)
nmt
We shall prove that
N
P(A) = Y. P(4|B,)P(B,) (1.4-10)

LER?

which is known as the total probability of event A.
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Figure 1.4-1 Venn disgram of N
" mutually exclusive events B, and
another event A,

:;':B,,-S. BuNBym @  forallmyn
Since 4 N § = A, we may start the proof using (1.4-9) and (1.2-8):

AnS=An(C}B,,>= O(Ar\B,,)

n=1 A=

(1.4-11)

Nc.?w the events 4 N B, are mutually exclusive as seen from the Venn diagram
(Fig. 1.4-1). By applying axiom 3 to these events, we have

N
P(d)=P(An S)= P[ U n B,,)] = iP(A A B,) (1.4-12)

n=1 n=]

(»;'l;crco)(m-ll) has been used. Finally, (1.4-4) is substituted into (1.4-12) to obtain
4-10).

Bayes’ Theoremt

The definition .of conditional probaBility, as given by (1.4-4), applies to any two
events. In particular, let B, be one of the events defined above in the subscction
on total probability, Equation (1.4-4) can be written

P(BnIA)=——-———P([i;(;‘) A4) (14-13)
if P(A) # 0, or, alternatively,
P(AIB,,)T%%TB-Q (1.4-14)

if P(B,) # 0. One form of Bayes' theorem is obtained by equating these two
expressions:

P(A|B)P(B,)

P(B, | 4) = ==

(1.4-15)

t The theorem is numed for Thomas Bayes (1702-1761), an English philosopher.
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Another form derives from a substitution of P(d4) us given by (1.4-10),

P(A] B,)P(B,)
(A B)P(B,) + -+ + P(4] By)P(By)

P(B,14) = (1.4-16)
P
form=1,2..,N.
An cxample will serve to illustrate Bayes' thcorem and conditional proba-

bility.

Example 1.4-2 An elementary binary communication system “consists of i
transmitter that sends one of two possible symbols (a | or a 0) over a channel
{o a receiver. The channel occasionally causes errors Lo occur so that a 1
shows up at the receiver as a 0, and vice versa.

The sample space has two elements (0 or 1). We denote by By, i = 1,2,
the events * the symbol before the channel is 1,” and “ the symbol before the
channel is 0,” respectively, Furthermore, define 4,,i =1, 2, as the cvents " the
symbol after the channel is 1," and *“the symbol after the channel is 0,
respectively. The probabilities that the symbols 1 and 0 are selected for trans-

mission are assumed to be
P(B,)=0.6 and P(B;) =04

Conditional probabilities describe the effect the channel has on the (rans-
mitted symbols. The reception probabilities given a 1 was transmitted are
assumed to be

P(A,]B,)=09
P(A,|B)) = 0.1
The channel is presumed to affect Os in the same manner so
P(4,]B;) = 0.1
P(A,]B,;) =09

In either case, P(4,]B) + P(4,|B) =1 because 4, and 4, arc mutually
exclusive and are the only “recciver” events (other than the uninteresting
events & and S) possible. The channel is often shown diagrammatically as’
illustrated in Figure 1.4-2. Because of its form it is usually called a binary
symmelric channel.

From (1.4-10) we obtain the “ received ” symbol probabilities

P(A ) = P(A,| B,)P(B,) + P(A,| B;)P(B,)
= 0.9(0.6) + 0.1(0.4) = 0.58

P(Ay) = P(A; ]| B)P(B,) + P(Ay| B))P(8y)
= 0.1(0.6) + 0.9(0.4) = 0.42
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0.y

”a
PR =06

rALBY

P(Hy) = 0.4 Figure 1.4-2 Binary synunetric

1.0 PAlBY) A, commum’cauon system dia-
grammatical model applicable
0.9 ) to Example 1.4-2.

From cither (1.4-15) or (1.4-16) we have
P(A,| B)P(B,) _0.9(0.6) _0.54

PB,1A) = 201 0.58 =—0—5§z0.93|
P(BytAy) = P4, ))(11/;1;«132) = 0’3_(2'24) = %—2 ~ 0.857
0,y = ALBIIE) L 0409 802015
140 = T A’f;’“’ ) 0104 2 ~ 0069

These last two numbers are probabilitics of system error while P(B,14))
and P(B,}4,)are probabilities of correct system transmission of symbols.

In Bayes' theorem (1.4-16), the probabilities P(B,) are usually referred to as a
priori probabilities, since they apply to the events B, before the performance of
the experiment. Similarly, the probabilities P(A4] B,) are numbers typically known
prior to conducting the experiment. Example 1.4-2 described such a case. The
conditional probabilities arc sometimes called transition probabilities in a com-
munications context. On the other hand, the probabilitics P(B,| A) arc called a
posteriori “probabilities, since they apply after the experiment’s performance when
some cvent A is obtained.

1.5 INDEPENDENT LYENTS

In this scction we introduce the concept of statistically independent cvents.
Although a given problem may involve any number of cvents in general, it is
most instructive to consider first the simplest possible case of two events.
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Two Events

Let two evenls A and B have nonzero probabililics of occurrence; that is, assume
’(A) # 0 and P(B) # 0. We call the events statistically independent if the probabil-
ity of occurrence of one cvent is not affected by the occurrence of the other event.
Mathematically, this statement is equivalent to requiring

P(A| B) = P(4) (1.5-1)
]
for statistically independent events. We also have
P(B| A) = P(B) (1.5-2)

for statistically independent events. By substitution of (1.5-1) into (1.4-4), inde-
pendencet also means that the probability of the joint occurrence (intersection) of
two events must equal the product of the two event probabilities:

P(A A B) = P(A)P(B) (1.5-3)

Not only is (1.5-3) for (1.5-1)] nccessary for two cvents to be independent but it is
sufficient. As a conscquence, (1.5-3) can, and often does, serve as a lest of

independence.
Statistical independence is fundamental to much of our later work. When

_events arc independent it will often be found that probability problems are

greatly simplified.
It has already been stated that the joint probability of two mutually exclusive
events is 0t
P(A N B)=0 (1.5-4)
If the two events have nonzero probabilities of occurrence, then, by comparison
of (1.5-4) with (1.5-3), we easily establish that two events cannot be both mutually
cxclusive and statistically independent. Hence, in order for two events to be inde-
pendent they must have an intersection A N B # .
If a problem involves more than two cvents, those cvents satisfying either

(1.5-3)or (1.5-1) are said lo be independent by pairs.

Fxample 1.5-1 In an experiment, one card is selected from an ordinary
52-card deck. Define events A as “sclect a king,” B as “select a jack or
queen,” and C as ugelect a heart.” From intuition, these cvents have probabil-
ities P(A) = Y52, P(B) = %2, and P(C) = Vo2 '

It is also easy (o state joint probabilities. P(A A B) =0 (it is not possible
lo simultancousty select & king and a juck or qucen), P(4 n C) = s, and

PB A C) = Ys3-

+ ‘We shall often use only the word independence 1o mean statistical independence.
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We determine whether 4, B, and C are independent by pairs by applying

(1.5-3):

P(A 1 B) = 0 % P(4)P(B) = 332.27

P(A n C) =-5-%= P(A)P(C) =5l2

PB A Q)= 2 = PBPC) =

Thus, 4 and C are independent as a pair, as are B and C, However, 4 and B ° .

are not independent, as we might have guessed from the fact that 4 and B
are mutually exclusive. !

In many practical problems, statistical independence of events is often
assumed. The justification hinges on there being no apparent physical connection
between the mechanisms leading to the events. In other cases, probabilities
assumed for elementary events may lead to independence of other events defined
from them (Cooper and McGillem, 1971, p. 24).

Multiple Events

When more than two events are involved, independence by pairs is not sufficient
to establish the events as statistically independent, even if every pair satislies
(1.5-3). ’

In the case of three events A7, A;,and A4,, they are said to be independent i,
aqd only xtt, they are independent by all pairs and are also independent as a
triple; that is, they must satisfy the four equations:

P(4, n Ay) = P(A})P(4)) (1.5-5a)
P(A; n Ay) = P(4,)P(A4,) (1.5-5b)
P(Ay n Ay) = P(A;)P(4,) (1.5-5¢)
P(A; N Ay 0 A3) = P(A)P(4,)P(4;) (1.5-5d)

Tl1c reader may wonder if satisfaction of (1.5-5d) might be sufficient to guaranice
independence by pairs, and therefore, satisfaction of all four conditions? The

answer is no, and supporting examples are relatively easy to construct. The
reader might try this exercise.
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More generally, for N events A,, 4,, ..., Ay to be called statistically inde-

pendent, we require that all the conditions

P(A; n Aj) = P(A)P(4))

Pldin 4,0 AY = P(A)P(A))P(A,) (1.5-6)

P(Ay n Ay nveon Ay = P(A)P(A3) - P(A)

be satisfied forall 1 € i<j<k <+ <N. Therearc 2" = N - | of-these condi-
tions (Davenport, 1970, p. 83).

Example 1.5-2 Consider drawing flour cards from an ordinary 52-card deck.
Let events 4,, A,, A5, A, define drawing an ace on the first, second, third,
and fourth cards, respectively, Consider two cases. First, draw the cards
assuming each is replaced after the draw. Intuition tells us that these events
are independent so P(A;, n A, N Ay n A) = P(A)P(A)P(A)P(Ay) =
(4/52)* =~ 3.50(10" %), :

On the other hand, suppose we keep each card after it is drawn. We now
expect these are not independent events. In the general case we may write

PlA, n Ay n Ay 0 AY)
= P(A)P(A; N A3 N A4l A4y)
= P(A)P(A| A )P(As N A Ay N A))
= P(A)P(A;| A)P(A;| A, N AP(A Ay 0 Ay 1 A3)

4 3 2 1
== — = 3.69(107¢
52 51 50 49 ( )
Thus, we have approximately 9.5-times better chance of drawing four aces
when cards are replaced than when kept, This is an intuitively satisfying
result since replacing the ace drawn raises chances for an acc on the suc-
ceeding draw,

Properties of Independent Events

Many properties of independent events may be summarized by the statement: If
N events A, 4,, ..., Ay are independent, then any one of them is independent of
any event formed by unions, intersections, and complements of the others
(Papoulis, 1965, p. 42). Several examples of the application of this statement are
worth listing for illustration.
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For two independent cvents A, and A, it results that A, is independent of™
A,, A, is independent of A,, and A, is independent of A,. These statements are
proved as a problem at the end of this chapter.

For three independent events 4,, 4,, and A4, any one is independent of the
joint occurrence of the other two. For example

P[A, Ay N A:\)) = P(AI)P(AZ)P(A.\) = P(A)P(A4, 0 Ay) (1.5-7)

with similar stalements possible for the other cascs Ay N (A, N A4y) and
Ay 0 (A, © Ay). Any onc cvent is also independent of the union of the other
two. For example

PlAy A (A; U A4)] = P(A)P(A; L 4y) (1.5-8)

This result and (1.5-7) do not nccessarily hold if the events are only independent
by pairs.

*1.6 COMBINED EXPERIMENTS

All of our work up to this point is rclated to outcomes from a single experiment.
Many practical problems arisc where such a constraincd approach does not
apply. One example would be the simultaneous measurement of wind speed and
barometric pressure at some location and instant in time. Two experiments are
actually being conducted; one has the outcome “speed”; the other outcome is
“pressure.” Still another type of problem involves conducting the same expeti-
menl several times, such as flipping a coin N times. In this case there are N per-
formances of the same experiment. To handle these situations we introduce the
concept of a combined experiment.

A combined experiment consists of forming a single experiment by suitably
combining individual experiments, which we now call subexperiments. Recall that
an experiment is defined by specifying three quantitics. They are: (1) the applic-
able sample space, (2) the cvents defined on the sample space, and (3) the prob-
abilities of the cvents. We specily these three quantities below, beginning with the
sample space, for a combined experiment.

*Combined Sample Space

Consider only two subexperiments first. Let S, and S, be the sample spaces of
the two subexperiments and let s, and 5, represent the elements of S, and S,
respectively, We form a new space S, called the combined sample space,t whose
clements are all the ordered pairs (s, 52). Thus, if S, has M elements and S, has
N clements, then S will have MN clements. The combined sample space is
denoted

=5, %5, (1.6-1)

t Also called the cartesian product space in some lexts.
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Example 1.6-1 1If S, corresponds to flipping a coin, then §, = {H, T}, where
H is the element “heads” and T represents “tails.” Let §, = {1,2,3,4,5,6)
corresponding to rolling a single die. The combined sample space § =
S, x S, becomes

S = {(H, 1), (H, 2), (H,3), (4, 4), (1, 5), (H, 6),
(T, 1), (T, 2, (T, 3), (T, 4), (T, ) (T, 6))

In the new space, elements are considered (o be single objects, each object
being a pair of items.

Example 1.6-2 We flip a coin twice, each flip being taken as one sub-
experiment. The applicable sample spaccs are now

S, = {H, T}
S, ={H, T}
S = {(H, H), (H, T), (T, H), (T, m}

In this last example, observe that the clement (H, T) is considered different
from the element (T, H); this fact emphasizes the elements of S are ordered pairs
of objects.

The more general situation of N subexperiments is a direct extension of the
above concepls. For N sample spaces S,, n = 1,2,..., N, having elements s,, the
combined sample space S is denoted

S=8§ xSy x - x8y (1.6-2)
and it is the sct of all ordered N-tuples
(S1s S20 0000 SN) (1.6-3)

*Events on the Combined Space

Events may be defined on the combined sample space through their relationship
with events defined on the subexperiment sample spaces. Consider two sub-
experiments with sample spaces S, and S,. Let A be any event defined on S, and
B be any event defined on S;, then

: C=AxB (1.6-4)
is an event defined on S consisting of all pairs (s, 5;)such that )
s, €A and s, €B (1.6-5)

Since elements of A correspond to clements of the event A x S, defined on §, and
clements of B correspond to the event S, x Bdefined on S, we easily find that

AxB=(A4x%xS)n{S xB) (1.6-6)
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Thus, the event defined by the subset of S given by A x B is the intersection of -

the subsets 4 x S, and S, x B. We consider all subsets of S of the form 4 x B as

events. All intersections and unions of such events are also events (Papoulis, 1965,
p. 50).

Example 1.6-3 Let S, = {0 s x <100} and S, ={0< y<50}. The com-

bined sample space is the set of all pairs of numbers (x, y) with 0 < x < 100 . .

and 0 < y < 50 as illustrated in Figure 1.6-1. For events
A={x; <x<x,}
B={y,<y<y) :
where 0 € x, < x; < 100 and 0 < y, < y, < 50, the events S, x B and 4 x
S, are horizontal and vertical strips as shown. The event

AxB={xl<x<X2}X{)’1<Y<YI}

is the rectangle shown. An event §; x {y = y,} would be a horizontal line.

_In the more general case of N subexperiments with sample spaces S, on
which events A4, are defined, the events on the combined sample space S will all
be sets of the form

A x Ay x o X Ay (1.6-7)

and unions and intersections of such sets (Papoulis, 1965, pp. 53-54).
y
&4 X8, @ AX8
50
/ s

N\
s

0 X3 100 x
QN(_J
N 4 _J
Y
Sy

Figure 1.6-1 A combined sample space for two subexperiments.

PROBABILITY 25

*Probabilities

To complete the definition of a combined experiment we must assign probabil-
ities Lo the evenls defined on the combined sample space S. Consider only two
subexperiments first, Since all events defined on S will be unions and intersections
of events of the form A x B, where A = S, and B < §,, we only need to deter-
mine (A x B for any A and B. We shall only consider the case where

P(A x B) = P(A)P(D) (1.6-8)

Subexperiments for which (1.6-8) is valid are called independent experiments.
To sce whal elements of § correspond Lo elements of A4 and B, we only need
substitute S, for B or S, for A in (1.6-8):

P(A x S,) = P(4)P(S;) = P(A) (1.69)
P(S, x B) = P(S,)P(B) = P(B) . (1.6-10)

Thus, elements in the set 4 x S, correspond to elements of 4, and those of
S, x B correspond to those of B.
For N independent experiments, the generalization of (1.6-8) becomes

P(A, x Ay x ++* x Ay) = P(A,)P(Ay) -+ P(Ay) (1.6-11)

where 4, =8, n=1,2,...,N.

With independent cxperiments, the above results show that probabilities for
events defined on S arc completcly determined from probabilities of events
defined in the subexperiments.

1.7 BERNOULLI TRIALS

We shall close this chapter on probability by considering a very practical
problem. It involves any experiment for which there are only two possible out-
comes on any trial. Examples of such an experiment are numerous: flipping a
coin, hitting or missing the target in artillery, passing or failing an cxam, re-
ceiving a 0 or a | in a computer bit stream, or winning or losing in a game of
chance, are just o few.

For this type of experiment, we let A be the clementary event having one of
the two possible outcomes as its element. 4 is the only other possible clementary
event. Specifically, we shall repeat the basic experiment N times and determine
the probability that A4 is observed exactly k times out of the N trials. Such re-
peated experiments are called Bernoulli trials.t Thosc readers familiar with com-
bined experiments will recognize this cxpcrimcnt'as the combination of N
identical subexperiments. For readers who omitted the section on combined
experiments, we shall develop the problem so that the omission will not impair
their understanding of the material,

t Afier the Swiss mathematician Jucob Bernoulti (1654-1705).
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Assume that clementary cvents arc statistically independent for cvery trial.
Let event 4 occur on any given trial with probability

P(A) = p (L.7-1)
The cvent A then has probability
PAy=1-p (1.7-2)

After N trials of the basic experiment, onc particular sequence of oulcomes has A
occurring k times, followed by A4 occurring N — k times.t Becausc of assumed
statistical independence of trials, the probability of this one sequence is

P(AYP(A) -+ PLA)PUAPA) -+ PA) = 1 = O (1.7-3)

N — k terms

k terms

Now there are clearly other particular sequences that will yicld k cvents A
and N — k cvents A.p The probability of cach of these sequences is given by
(1.7-3). Since the sum of all such probabilitics will be the desired probability of 4
occurring cxactly k limes in N trials, we only need find the number of such
sequences. Some thought will reveal that this is the number of ways of taking k
objects at a time from N objects. From combinatorial analysis, the number is

known to be
N N!
<k>—k!(N_k)! (1.7-4)

The quantity (§) is called the binomial coefficient. It is sometimes given the symbol
o
From the product of (1.7-4) and (1.7-3) we finally obtain

N
P{A oceurs exactly k times} = <k>p‘(l —pt (1.7-5)

Exawple 1.7-1 A submarinc attempts to sink an aircraft carrier. It will be
successful only if two or more torpedocs hit the carrier. 1f the sub fires three
torpedoes and the probability of a hit is 0.4 for each torpedo, what is the
probability that the carrier will be sunk?

t This particular sequence corresponds 1o one N-dimensional clement in the combined sample

space S. ) )
t All such sequences define all the elements of S that satisfy the event {4 occurs exactly k times in

N trials) defined on the combined sample space.
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Define the event A = {torpedo hits}. Then P(A) = 0.4, and N = 3. Prob-
abilities are found from (1.7-5):

3

P{exactly no hits} = <g>(0.4)0(1 —04) =0216
) (

P{cxactly one hit} = ( )0.4)‘(1 —~0.4)r = 0432

2 )
> (0.4)%(1 — 0.4)° = 0.064

3

P{exactly two hits} = <3>(O.4)2(l —0.4)! =0.288
P{exactly three hits} = ( )

The answer we desire is

P{carrier sunk} = P{two or more hits}
= P{exactly two hits} + P{cxactly three hits}
= 0.352

Example 1.7-2 In a culture used for biological research the growth of un-
avoidable bacteria occasionally spoils results of an experiment that requires
at least three out of four cultures to be unspoiled to obtain a single datum
point. Experience has shown that about 6 of every 100 cultures are randomly
spoiled by the bateria. If the experiment requires three simultaneously
derived, unspoiled data points for success, we find the probability of success
for any given set of 12 cultures (three data points of four cultures each).

We treat individual datum points first as a Bernoulli trial problem with
N = 4 and p = P{good culture} = *%, oo = 0.94. Here

P{valid d%\lum point} = P{3 good cultures} + P{4 good cultures}
4 4
= <j>(0.94)’(1 - 0.94) + (4)(0.94)‘(1 ~ 0.94)° =~ 0.98

Finally, we trcat the required three data points as a Bernoulli trial
problem with N = 3 and p = P{valid datum point} = 0.98. Now

P{successful experiment} = P{3 valid data points}

= (;)(O.QS)J(I —0.98)° =~ 0.941.

Thus, the given experiment will be successful about 94.1 percent of the time.

|
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PROBLEMS

-1 Specify the following sets by the rule method.
A=1{1,23},B=1{8101214},C={1,3,57,...}

1-2 Use the tabular method to specify a class of sets for the sets of Problem 1-1.
1-3 State whether the following sets arc countable or uncountable, or, finite or

infinite. 4 = {1}, B = {x = 1}, C = {0 < integers}, D = {children in public school

No. 5}, E = {girls in public school No. 5}, F = {girls in class in public school
No. 5 at 3:00 aM}, G={all lengths not exceeding one meter}, H =
{(=25<x< =3),I={-2,~1,lsx<2} :

1-4 For each set of Problem 1-3, determine il it is equal to, or a subset of, any of -

the other sets. i
1-5 State every possible subset of the set of letters {aq, b, ¢, d}.
1-6 A thermometer measures temperatures from —40 to 130°F (—40 to 54.4°C),

(a) State a universal set to describe temperature measurements. Specifly °

subsets for:

(b) Temperature measurements not exceeding water’s freezing point, and

(c) Mecasurements exceeding the freezing point but not exceeding 100°F
(37.8°C).

*1.7 Prove that a set with N elements has 2V subsets.

1-8 A random noise voltage at a given time may have any value from —10 to
10V.

(a) What is the universal set describing noise voltage?

(b) Find a set to describe the voltages available from a half-wave rectifier for -

positive voltages that has a linear output-input voltage characteristic.
(¢) Repeat parts (a) and (b) il a dc voltage of —3 V is'added to the random
noise.

1-9 Showthat Cc AifC< Band B < 4.

1-10 Two sets are given by 4 = {-6, -4, —0.5,0, 1.6, 8} and B= {-05,0,1,2, "}

4}. Find:

(@ A—-B () B—A4 (@ AuB (@ANB
11 A univeral set is given as § = {2, 4, 6, 8, 10, 12}. Define two subsets as
= {2, 4, 10} and B = {4, 6, 8, 10}. Determine the following:

(a) A=S—A b)) A—Band B~ A4 (c) AuB d) AnD

(e AnB
1-12 Using Venn diagrams for three sets 4, B, and C, shade the areas corre-
sponding to the sets: Lo

@WAUB-C BYBnA ()ANnBAnC @H{AuBnC

1-13 Sketch a Venn diagram for three events where AN B# &, Bn C # &,
CnA#Z,bUlANBNC=(.

1-
A
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1-14 Use Venn diagrams to show that the following identities are true:
(@ (AUBNC=C-[(ANnC)u(BnC)
) (AuBUC)—(AanC)=(Zr\B)u(l§nC)u(Cn/l)
) AnBnC=4AuBul

1-15 Use Venn diagrams to prove De Morgan's laws (4 v B) = An B and
(A~ B)=Au B
1-16 A universal set is S={-20<s< —4), I A={-10<s<5 -5} and
B={-7<s< —4)},find:

(@) Au B ‘.

by AnB

(c) A third set C such that the sets 4 A Cand B n Care as large as possible
while the smallest element in Cis ~9.

(d) Whatistheset A n B n C?

@ Use De Morgan's lalvs to_show_lhal:
(@ AnBUC)=(AuBn(d v )

) @rnBRAC)=AuBuC

In each case check your results using a Venn diagram.
1-18 A die is tossed. Find the probabilities of the events 4 = {odd number shows

upl, B = {number larger than 3 shows up}, A v B,and 4 n B.
1-19 An a game of dice, a “ shooter” can win outright if the sum of the two

fbers showing up is either 7 or 11 when two dice are thrown. What is his
prebability of winning outright?

<ll’-/20« A pointer is spun on a fair wheel of chance having its periphery labeled
-

om 0 to 100.
(1) What is the sample space for this experiment?
(b) What is the probability that the pointer will stop between 20 and 357
——{c) What is the probability that the wheel will stop on 587
@ An experiment has a sample space with 10 equally likely elements § = {a,,
/..., a0} Three events are defined as 4 = {a,, as, ag}, B = {ay, a3, a6, a5},
and C = {ag, ay}. Find the probabilitics of:
(@ Au C
mBul
) An(Bu(
() A0 B
&) (AuBnC
1-22 Let 4 be an arbitrary event. Show that P(A) = L — P(A).
1-23 An experiment consists of rolling a single dic. Two events are defined as:

A = {a 6 shows up} and B = {a 2 or a 5 shows up}.
(@) Find P(4) and P(B).

) Define a third cvent C so that P(C) = | — P(4) — P(B).
{ 1-24/1n a box there are 500 colored balls: 75 black, 150 green, 175 red, 70 white,
ard 3

0 blue. What are the probabilitics of sclecting a ball of each color?

. ol
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1-25 A singlc card is drawn (rom a 52-card deck.
(«) What is the probability that the card is a jack?
(hy What is the probability the card will be a 5 or smaller?
(¢) What is the probability that the card is a red 107

Ay .
1-26/ Two cards arc drawn from a 52-card deck (the first is not replaced).
(a) Given the first card is a queen, what is the probability that the sccond is

also a queen?
(b) Repeat part (a) for the first card a queen and the second carda 7,

) What is the probability that both cards will be a queen?

1-27//An ordinary 52-card deck is thoroughly shuffled. You are deall four cards
Up. What is the probability that all four cards are scvens?

1-28 For the resistor selection experiment of Example 1.4-1, define event D as
“draw a 22-Q resistor,” and L as “draw a resistor with 10% tolerance.” Find
P(D), P(E), P(D n E), P(D| E), and P(E| D).

1-29 For the resistor selection experiment of Example 1.4-1, define two mutually

exclusive events B, and B, such that By v By =S.
(@) Use the total probability theorcm o find the probability of the event

“select a 22-02 resistor,” denoted D.
(b) Use Bayes’ thcorem Lo find the probability that the resistor sclected had

5% tolerance, given it was 22 Q.

@ In three boxes there are capacitors as shown in Table P1-30. An cxperiment
consists of first randomly selecting a box, assuming each has the same likelihood
of sclection, and then selecting a capacitor from the chosen box.

{a) What is the probability of selecting a 0.01-uF capacitor, given that box 2

is sclected?
(b) 12 0.01-uF capacitor is selected, what is the probability it came from box

37 (Hint: Usc Bayes’ and total probability theorems.)

Table P1-30 Capacitors

Number in box

et et

Value (uF) { 2 3 Tolals
0.01 v 20 95 25 140
0.1 55 kM 15 165
1.0 70 80 145 295
Totals 145 210 245 600

1-31 For Problem 1-30, list the ninc conditional probabilitics of capacilor sclec-
iag, given certain box sclections.

./um\\g .
1-32) Rework Example 1.4-2 if P(B,) = 0.6, P(By) = 04, P(A,|B}) = P{A,|B,)
0%, and P(A, 1By = P44 B,) = 0.05.

a7
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cwork Example 1.4-2if P(B,) = 0.7, P(B,) = 0.3, P(4,] B,) = P(A;]B;)) =
-0 and P(A;) B)) = P(A,1B,) =0. What type of channcl docs this system have?
{1-34 /A company sclls high fidelity amplificrs capable of generating 10, 25, and
W of audio power. It has on hand 100 of the 10-W units, of which 15% are
defective, 70 of the 25-W units with 10% defective, and 30 of the 50-W units with
10% defective. ’
(a) What is the probability that an amplifier sold from the 10-W units is
defective? '
(b) If each wattage amplifier sells with equal likelihood, what is the probabil-
ity of a randomly selected unit being 50 W and defective?
(c) What is the probability that a unit randomly sclected for sale is defective?
gﬁf‘\ missile can be accidentally launched if two relays 4 and B both have
iféd. The probabilities of 4 and B failing are known to be 0.01 and 0.03 respec-
tively. It is also known that B is more likely to fail (probability 0.06) if A has
failed.
{a) What is the probability of an accidental missile launch?
{by What is the probability that 4 will fail if B has failed?
(c) Are the events “A fails" and “ B fails " statistically indcpendent?
1-36 Determine whether the three events A, B, and C of Example 1.4-1 are sta-
tistically independent.
1-37 List the various equations that four events A, Ay, Ay, and A, must satisly

i are to be statistically independent.
Hiven that two events 4, and A4, are statistically independent, show that:

’ {w) A, is independent of 4,

(b) A, is independent of 4,

(c) A, is independent of 4,
*1.39 An experiment consists of randomly selecting one of five cities on Florida's
west coast for a vacation. Another experiment consists of selecting at random one
of four acceptable motels in which to stay. Define sample spaces S, and S, for the

two experiments and a combined space S = S, x S, for the combined experiment :

having the two suqupcrimcms.
*1.40 Sketch the area in the combined sample space of Example 1.6-3 correspond-
ing to the event A4 x: B where:

(@) A= {10 <x'< 15} and B= {20 < y < 50}

(b A={x=40}andB={5<yS40}

) A production line manufactures S-gal (18.93-liter) gasoline cans to a volume
tolerance of %. The probability of any one can being out of tolerance is 0.03. If
four cans are selected at random:

(a) Whatis the probability they are all out of tolerance?

(h) Whatis the probability of exactly two being out?

(¢} What is the probability that all are in tolerance?

1-42 Spacccraft arc expected to land in a prescribed recovery zone 80% of the
lime. Over a period of time, six spacecraft land.
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(a) Find the probability that none lands in the prescribed zone.

(b) Find the probability that at least one will land in the prescribed zone.

(¢) The landing programsis-called successful if the probability is 0.9 thal three
or n;orc out of six spacccralt will land in the prescribed zone. Is the program suc-
cessful?

1-43 In the submarine problem of Example 1.7-1, find the probabilities of sinking
the carrier when fewer (N = 2) or more (N = 4) torpedoes are fired.

ADDITIONAL PROBLEMS

1-44 Use the tabular method to define a set 4 that contains all integers with
magnitudes not exceeding 7. Define a second set B having odd integers larger
than —2 and not larger than 5. Determine if A <« Band if B <« 4.

l-rdj A set A has three elements a,, a5, and ay. Determine all possible subsets
of A, .

1-46 Shade Venn diagrams to illustrate each of the following sets: (@) (4 v B) n
COANBUCEMAUVBUVECADDMAANBAOVEACA D).
1-47 A universal set S is comprised of all points in a rectangular area defined by
0<x<3 and 0<y=<4 Define three sets by 4 = {y<3x-1)2}, B=

{r21}, and C={y=>3—x}. Shade in Venn diagrams corresponding to the .

sets(@ANBnCand(h)Cn Bn A

1-48 The take-off-roll distance for aircralt at a certain airport can be any number
from 80 m to 1750 m. Propeller aircraft require from 80 m to 1050 m while jets
use from 950 m (o 1750 m. The overall runway is 2000 m,

{(a) Determine sets A, B, and C defined as “ propeller aircraft take-ofT dis-
tances,” “jet aircraft take-off’ distances,” and “runway length safety margin,”
respectively.

(b) Determine the set A N B and give its physical significance,

(c) What is the meaning of the set-4 U B?

{(d) What are the meanings of thesets 4 U B u. C and 4 u B? .
1-49 Prove that DeMorgan’s law (1.2-13) can be extended 1o N events A i=1,
2,..., N asfollows '

Aind;n o ndy=A,vAdu- - udy
1-50 Work Problem 1-49 for (1.2-12) to prove
(AvvAuvdy=And, N ndy

1-51 A pair of fair dice are thrown in a gambling problem. Person 4 wins if the
sum of numbers showing up is six or less and one of the dice shows four. Person -
B wins il the sum is five or more and one of the dice shows a four. Find: (a) The
probability that 4 wins, (b) the probability of B winning, and (c) the probability
that both 4 and B win. )

1-52 You (person A4) and two others (B and C) each toss a fair coin in a two-step

]
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gambling game. In step 1 the person whose toss is not a match to either of the
other two is *odd man oul.” Only the remaining two whose coins match go on
to step 2 Lo resolve the ultimate winner.

(a) What is the probability you will advance to step 2 after the first toss?

(h) What is the probability you will be out after the first toss?

(¢) What is the probability that no one will be out after the first toss?

*1-53 The communication system of Example 1.4-2 is to be extended to the cuse
of threc transmitted symbols 0, 1, and 2. Define appropriate events 4; and B;,
i=1, 2, 3, to represent symbols after and before the channel, respectively.
Assume channel transition probabilities are all equal at P(4,;]B) = 8.1, i # j, and
are P(A,|B) = 0.8 for i = j = 1, 2, 3, while symbol transmission probabilities are
P(B,) = 0.5, P(B,) = 0.3, and P(B,) = 0.2,

(a) Sketch the diagram analogous to Fig. 1.4-2,

() Compule received symbol probabilitics P(A,), P(4;), and P(4,).

(¢} Compute the a posteriori probabilities for this system.

(d) Repeat parts (b) and (c) for all transmission symbol probabilitics cqual.
Note the cflect.
1-54 Show that there arec 2¥ — N — | equations required in (1.5-6). (Hint: Recall
that the binomial coefficient is the number of combinations of N things taken n
at a time.)
1-55 A student is known to arrive late for a class 40% of the time. If the class
meets five times each week find: (a) the probability the student is late for at least
three classes in a given week, and (b) the probability the student will not be late
at all during a given week.
1-56 An airline in a small city has five d(‘:partures each day. It is known that any
given Right has a probability of 0.3 of departing late. For any given day find the
probabilities that: (a) no flights depart late, (b) all flights depart late, and (c) three
or more depart on time.
1-57 The local manager of the airline of Problem 1-56 desires to make sure that
90% of flights leave on time, What is the largest probability of being late that the
individual flights can have if the goal is to be achicved? Will the operation have
to be improved significantly?
1-58 A man wins in a gambling game i he gets two heads in five llips of a biased
coin. The probability of getting a head with the coin is 0.7.

(@) Find the probability the man will win. Should he play this game?

(b What is his probability of winning if he wins by getting at least four
heads in five flips? Should he play this new gamc?

*1-59 A rifleman can achieve a “marksman” award if he passes a test. He is
allowed to fire six shots at a target’s bull’s eye. If he hits-the bull's eye with at
least five of his six shots he wins a set. He becomes a marksman only if he can
repeat the feat three times straight, that is, if he can win three straight sets. If his
probability is 0.8 of hitling a bull’s eye on any one shot, find the probabilitics of
his: (a) winning a sct, and (b) becoming a marksman,
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TWO
THE RANDOM VARIABLE

2.0 INTRODUCTION

In the previous chapter we introduced the concept of an event to describe charac-
teristics of outcomes of an experiment. Events allowed us more flexibility in
determining properties of an experiment than could be obtained by considering
only the outcomes themsclves. An cvent could be almost anything from
= descriptive,” such as “draw a spade,” to numerical, such as “ the outcome is 3.”

In this chapter, we introduce a new concept that will allow events to be
defined in a more consistent manner, they will always be numerical, The new
concept is that of a randont variable, and it will constitute a powerful tool in the
solution of practical probabilistic problems.

2.1 THE RANDOM VARIABLE CONCEPT

Definition of a Random Variable

We definc a real random variablet as a real function of the elements of a sample
space S. We shall represent a random variable by a capital letter (such as W, X,
or Y)and any particular value of the random variable by a lowercase letter (such

t Complex random variables are considered in Chapter S.

M
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R asw, X, 0f y). Thus, given an experiment defined by a sample space S with ele-
Wi ments 5, we assign toevery s & real number

X(s) (2.t-1)

»
according to some rule and call X(s) a random variable.

A random variable X can be considered Lo be a function that maps all ele-
ments of the sample space into points on the real line or some parts thereof. We
illustrale, by two examples, the mapping of a random variable.

ixample 2.1-1 An cxperiment consists of rolling a dic and fipping 8 coin,
The applicable sample space is illustrated in Figure 2.1-1. Let the random
variable be a function X chosen such that (1) a coin head (H) outcome corre-
sponds to positive values of X that arc equal to the numbers that show up on
the dic, and (2) a coin tail (T) outcome corresponds to negative values of X
that are equal in magnitude to twice the number that shows on the die. Here
X maps the sample space of 12 elements into 12 values of X from —12to 6
s shown In Figure 2,11,

Example 2.1-2 Figure 2.1-2 illustrates an cxperiment where the pointer on a
whee! of chance is spun. The possible outcomes are the numbers from 0 to 12
marked on the wheel. The sample space consists of the numbers in the set
{0 <5< 12} We define a random variable by the function

X=X@s=5

Points in S now map onto the real line as the set {0 < x < 144}.
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12

i

L 1
09 36 100 144 200 x  to Example 2.1-2.

As seen in these two examples, a random variable is a function that maps 3

each point in S into some point on the real line. It is not necessary that the
sample-space points map uniquely, however. More than one point in S may map

into a single value of X, For example, in the extreme case, we might map all six

points in the sample space for the experiment “throw a die and observe the
number that shows up” into the one point X = 2. '

Conditions for a Function to be a Random Variable

Thus, a random variable may be almost any function we wish. We shall, however,

require that it not be multivalued. That is, every point in S must correspond to * -

only one value of the random variable,

Moreover, we shall require that two additional conditions be satisfied in
order that a function X be a random variable (Papoulis, 1965, p. 88). First, the
set {X < x} shall be an event for any real number x. The satisfaction of this con-
dition will be no trouble in practical problems. This set corresponds to those
points s in the sample space for which the random variable X(s) does not exceed
the number x. The probability of this event, denoted by P{X < x}, is equal to the
sum of the probubilitics of all the clementary events corresponding to {X < x}.

The second condition we require is that the probabilities of the events
{X = o} and (X = — o0} be 0: ‘

P{X=—-0)=0 P(X=c0}=0 e

This condition does not prevent X from being either — o or oo for some values
of s; it only requires that the probability of the set of those s be zero.

L Figure 2.1-2 Mapping applicable
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Discrete and Continuous Random Variables

A discrete random variable is onc having only discrete values. Example 2.1-1 illus-
trated a discrete random variable. The sample space for a discrete random vari-
able can be discrete, continuous, or even a mixture of discrete and continuous
points. For example, the * wheel of chance” of Example 2.1-2 has a conlinuous
sample space, but we could define a discrete random variable as having the vitlue
1 for the set of outcomes {0 < s < 6} and —1 for {6 < s < 12}. The result is o
discretc random variable defined on a continuous sample space.

A continuous random variable is one having a continuous range of valucs. Tt
cannot be produced from a discrete sample space because of our requirement
that all -random variables be single-valued functions of all sample-space points.
Similarly, a purely continuous random variable cannot result from a mixcd
sample space because of the presence of the discrete portion of the sample space.
The random variable of Example 2.1-2 is continuous.

Mixed Random Variable

A mixed random variable is one for which some of its values are discrete and some
are continuous. The mixed case is usually the least important type of random
variable, but it occurs in some problems of practical significance.

2.2 DISTRIBUTION FUNCTIONM

The probability P{X < x} is the probability of the event {X < x}. It is a number
that depends on x; that is, it is a function of x. We call this function, denoted
Fx(x), the cumulative probability distribution function of the random variable X,
Thus,

Fx(x) = P{X < x} (2.2-1)

We shall often call Fy(x) just the distribution function of X, The argument x is any
real number ranging from — o to co.

The distribution function has some specific properties derived from the fact
that Fy(x) is a probability. These are:}

() Fy(—o0)=0 (2.2-20)
(2) Fylw) =1 (2.2-2b
() 05 Fyx) <1 (2.2-20)
(@) Fy(x,) € Fylx)) if  x, <x, (2.2-2d)
(5) P{x; <X < xp} = Fx(x3) — Fylx)) (2.2-2¢)
(6) Fx(x™)= Fylx) (2.2-2)

t We use the notation x* to imply x + ¢ where ¢ > 0 is infinitesimally small; that is, ¢ — 0.
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The first three of these properties are easy to justify, and the reader should justify
them as an exercise. The fourth states that Fy(x)isa nondecreasing function of x.
The fifth property states that the probability that X will have values larger than
some number x; but not exceeding another number X, is equal to the difference
in Fy(x) cvaluated at the two points. It is justified from the fact that the cvents
(X < x,} and {x, < X < x,} are mutually exclusive, so the probability of the
event {X sx,}={X< xJulx<Xs x,)} is the sum of the probabilitics
P{X < x} and P{x, <X = x,}. The sixth property states that Fy(x) is a func-
tion continuous from the right.

Propertics 1, 2, 4, and 6 may be uscd as tests to determine il some function,
say Gyl(x), could be a valid distribution function. If so, all four lests musl be
passcd.

If X is a discrete random variable, consideration of its distribution function
defined by (2.2-1) shows that Fy(x) must have a stairstep form, such as shown in
Figure 2.2-1a. The amplitude of a step will equal the probability of occurrence of
the value of X where the step occurs. if the values of X arc denoted x;, we may
write Fy(x) as

N
Fylx)= L P{X= xJt(x — x)) (2.2-3)
i=1
where (+) is the unit-step function defined byt
1 x20
= 2-4
1(x) {0 20 (2.2-4)

and N may be infinite for some random variables. By introducing the shortencd

notation
P(x) = P{X = x} (2.2-5)

(2.2-3) can be written as

N
Fyx) = T Plxulx — xi) (2.2-6)
=1

We next consider an example that illustrates the distribution function of a
discrete random variable.

Example 2.2-1 Let X have the discrete values in the set {—1, -0.5, 0.7, 1.5,
3} The corresponding probabilitics are assumed to be {0.1, 0.2, 0.1, 04, 0.2}.
Now P{X < —1} = 0 because there arc no sample space points in the sct
{X < —1}. Only when X = —1 do we obtain onc outcome. Thus, there is an
immediate jump in probability of 0.1 in the function Fy(x) al the point
y= =1 For =l <x< —0.5, there arc no additional sample space points so
Fy(x) remains constant at the value O.1. At x = —0.5 there is another jump of

t This definition dilfers slightly from (A-5) by including the equality so that 1{x) satislies (2.2-2/)

L
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Fx(X)
T Tt —
0.5
i 1 | 1 1

- 0 ; ! 2 3 Y
-0.5 0.7 1.5
(a)
Sx(x)
0.6}
04l 0.4
0.2 0.2
0.1 t 0.2+ o 1
A b, .
-1 0 I 2 3 x
)

Figure 2.2-1 Distribution function {(a) and density function (b) applicable to the dscrele random vari-
able of Example 2.2-1. [Adapted from Peebles (1976) with permission of publishers Addison-Wesley,
Advanced Book Program.)

0.2 in Fyx(x). This process continues until all points are included. Fx(x) then
equals 1.0 for all x above the last point. Figure 2.2-1a illustrates F(x) for this
discrete random variable.

A continuous random variable will have a continuous distribution function.
We consider an example for which Fy(x) is the continuous function shown in
Figure 2.2-2a.

Example 2.2-2 We return to the fair wheel-of-chance cxperiment. Let the
wheel be numbered from 0 to 12 as shown in Figure 2.1-2. Clearly the prob-
ability of the cvent {X < 0} is O because there are no sample space points in
this set. For 0 < x < 12 the probability of {0 < X < x} will incrcase linearly
with x for a fair wheel. Thus, F y{(x) will behave as shown in Figurc 2.2-2a.

The distribution function of a mixed random variable will be a sum of two
parts, one of stairstep form, the other continuous. ’
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FX‘X)
1.0 S
0.5
~~;s"j,
1
0 6 12 x
(a)
[x{x)
A
12
Figure 22-2 Distribution [function (a) and
density function (b) applicable to the continuvous
; 1 random variable of Example 2.2-2. [Adapted
6 12 x  from Peebles (1976) with permission of publishers
) Addison-Wesley, Advanced Book Program.]

2,3 DENSITY FUNCTION

The probability deusity function, denoted by fx(x), is defined as the derivative of
the distribution function:

. {F y(x)
‘ Six) = fd—’;’f- (2.3-1)

We often call fy(x) just the density function of the random variable X,

Existence

If the derivative of Fy(x) exists then f(x) exists and is given by (2.3-1). There may,
however, be places where dFy(x)/dx is not defined. For example, a continpous
random variable will have a continuous distribution Fy(x), but Fy(x) may have
corners (points of abrupt change in slope). The distribution shown in Figure
2.2-2a is such a function. For such cases, we plot fy(x) as a function with step-
type discontinuities (such as in Figure 2.2-2b). We shall assume that the number
of points where F,(x) is not differentiable is countable. '
For discrete random variables having a stairstep form of distribution func-
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tion, we introduce the concept of the unit-impulse function 3(x) to describe the
derivative of Fy(x) at its stairstep points. The unit-impulse function and ils
propertics are reviewed in Appendix A, Tt is shown there that 8(x) may be delined
by its integral property

Plxg) = Jw P(x)0(x ~ xo) dx (2.3-2)

where ¢(x) is any function continuous at the point x = xg; 6(x) can beinterpreted
as a “function” with infinite amplitude, area of unity, and zero duration, The
unit-impulse and the unit-step functions are related by

5(x) = % (2.3-3)
or
r 5(8) dE = u(x) (2.3-4)

h

The more general impulse function is shown symbolically as a vertical arrow
occurring at the point x = x, and having an amplitude equal to the amplitude of
the step function for which itis the derivative,

We return (o the case of a discrete random variable and differentinte Fy(x),
as given by (2.2-6), lo obtain

N

Sxlx) = z Plx)d(x — x) (23-5)

l=1

Thus, the density function for a discrete random variable exists’in the sense that
we use impulse functions to describe the derivative of Fy(x) at its stairstep points.
Figure 2.2-1b is an example of the density function for the random variable
having the function of Figure 2.2-1a as its distribution.

A physical interpretation of (2.3-5) is readily achicved. Clearly, the probabil-
ity of X having one of its particular values, say x;, is a number P(x,). If this prob-
ability is assigned to the point x,, then the density of probability is infinite
because @ point has no “width” on the x axis. The infinite “amplitude™ of the
impulse function describes this infinite density. The “size” of the density of prob-
ability at x = x, is accounted for by the scale factor P(x,) giving P(x))é(x — x;) for
the density at the point x = x,.

|
|
!
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Propertics of Density Functions

Scveral properties that fx(x) satisfics may be stated:
(1) 0s/fxlx) allx

) r filx) dx = 1

S

©) Fx(-‘)'—'-j_ Jx(8) d¢ (2.3-6¢)

x1
4 Plxy<X< X3} = [ Sx(x) dx (2.3-64)

X1
Proofs of these properties are left to the reader as exercises. Properties 1 and 2
require that the density function be nonnegative and have an area of unity. These
{wo propertics may also be used as tests to see if some function, say gx(x), can be
a valid probability density function. Both tests must be satisfied for validity.
Property 3 is just another way of writing (2.3-1) and serves as the link between
F ¢(x) and fy(x). Properly 4 relates the probability that X will have values {from x,
to, and including, x, to the density function.

Example 2.3-1 Let us lest the function gx(x) shown in Figurc 2.3-1a to sce il
it can be a valid density function. 1t obviously satisfics property | sincc it is
nonncgative. Its arca is ax which must equal unity to satisly property 2.
Therefore a = 1/a is necessary if gx(x)istobea density.

Suppose a = l/o. To find the applicable distribution function we first

wrile
0 Xog—=a> X2 Xg+ 0
1
—(x—Xot+a& Xo— S X <X
g = {2 ST °
1 !
;—;—z(x—xo) Xog SX <X+ a

Next, by using (2.3-6¢), we obtain

0 Xo — 0> X
- X l 2
J gx(é‘)dé=7&3(x—xo+a) Xg — & S X < Xo
xqg—a
G.\'(~")=<l x . (. 1 2
§+ xo{lx({)‘é—z’*‘a(x“xo)—zaz (x — Xo
Xg S X <X+ 0

1 Xgt+tasx

This function is plotted in Figure 2.3-1b.

(2.3-6a).”

236y &,
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0 Xg - Xo X to X
(a)
Gylx)|fora=— | | |
1 1 1
i | i
] | |
1.0F | | -
1 | {
| | |
A
0.5}
5 [ | |
i | |
| | I A
! ] Figure 23-1 A possible probability
0 Ko - Xo Xo ta X density function (a) and 8 distribution

(3] function (b) applicable to Examnple 2.3-1.

Example 2.3-2 Supposc a random variable is known to have the triangular
probability density of the preceding example with xo =8, a= 5 and a=
1/a = '/, . From the carlier work

0 I>x213
Sx(x) = {(x —3)/25 3gx<8
0.2 — (x — 8)/25 . §<x <13

We shall use this probability density in (2.3-6d) to find the probability that X
has values greater than 4.5 but not greater than 6.7. The probability is

6.7

K

P45 <X <67} = J [(x — 3)/25] dx
= 0.2288

.-. 1 [x?
' —25[2 —3'{] 4.5

Thus, the event {45 < X < 6.7} has a probability of 0.2288 or 22.88%.

6.7

2.4 THE GAUSSIAN RANDOM VARIABLE

A random variable X is called gaussiant if its density function has the form

1
Sxx) = \/—5-:—;5

t After the German mathemaltician Johann Friedrich Carl Gauss (1777-1855). The gaussian
density is often calied the normal density.

e - ax)3/20xt

(2.4-1)

~
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/‘x (x)

!

oo [T

S

0 ay -0y ax ay +ox x

Fx(x)

Figure 2.4-1 Density (a) and
distribution (h) functions of o
) gaussian rundom variable,

0 dy-oy dy uy toy X

where gy > 0 and ~ o0 < ay < oo are real constants. This function is sketched in
Figure 2.4-la. Its maximum value (2no})~!/? occurs at x = ay. Its “spread”
abogt the point x = ay is related to gy, The function decreases to 0.607 times its
maximum at x = ay + oy and x = ay — oy,

The gaussian density is the most important ot all densities. It enters into
nearly all areas of engineering and science. We shall encounter the gaussian
rz;ndt?m variable frequently in later work when we discuss some important types
of noise.

The distribution function is found from (2.3-6¢) using (2.4-1). The integral is

Fx(x) =

This integral has no known closed-form solution and must be evaluated by
numerical methods. To make the results generally available, we could develop a
set of tables of Fy(x) for various x with a, and o as parameters. However, this
approach has limited value because there is an infinite number of possible com-

l . :
Ve [ a (2.4)
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binations of ay and @y, which requires an infinite number of tables, A hetter
approach is possible where only one table of Fy(x) is developed that corresponds
(o normalized (specific) values of ay and oy, We then show that the one table can
be used in the general case where ay and gy can be arbitrary.

We starl by first selecting the normalized case where ay = 0 and oy = 1.
Denote the corresponding distribution function by F(x). From (2.4-2), F(x) is

] x
Flx) = —= p =32 (2.4-3)
(x) o me dg

-

which is a function of x only. This function is tabularized in Appéndix B for .

x 2 0. For negalive values of x we use the relationship
F(-x) =1 = F(x) (2.4-4)

To show that the general distribution function Fy(x) of (2.4-2) can be lound
in terms of F(x) of (2.4-3), we make the variable change

w=(§ = ay)oy (2.4-5)
in (2.4-2) to obtain ‘
Fylx) = —-l— J‘(x’"!"”(‘ =l dy (2.4-0)
X \/2—7! »

From (2.4-3), this expression is clearly equivalent to
x—a
Fylx) = 1(———i‘> (2.4-7)
Tx

Figure 2.4-1b depicts the behavior of Fy{x).
We consider two examples to illustrate the application of (2.4-7).

Example 2.4-1 We find the probability of the event {X < 5.5} for a gaussian
random variable having ay =3 and oy = 2.

Here (x — ay)/oyx = (5.5-3)/2 = 1.25. From (24-7) and the definition of
Fy(x)

P{X < 5.5} = Fy(5.5) = F(1.25)
By using the table in Appendix B

P{X < 5.5} = F(1.25) = 0.8944

s

-~
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Example 2.4-2 Assume that the height of clouds above the ground at some
location is a gaussian random variable X with ay = 1830 m and gy = 460 m.
We find the probability that clouds will be higher than 2750 m (about
9000 ft). From (2.4-7) and Appendix B:
P{X > 2750} =1 — P{X <2750} =1 — F(2750)
) 2750 — 1830
1—r( 260 >—1—F(2.0)

| — 09772 =0.0228

i

i

I

The probability that clouds are higher than 2750 m is thercforc about 2.20
percent if their behavior is as assumed.

2.5 OTHER DISTRIBUTION AND DENSITY EXAMPLES

Many distribution functions are important enough to have been given names. We
give five examples. The first two are for discrete random variables; the remaining
three are for continuous random variables. Other distributions are listed in

Appendix F.

Binomial
LetO<p<land N = 1,2,..., then the function
N [N
S =2 (k>l’*(l — RS — k) 25-)
k=0

is called the binomial density function. The quantity (M is the binomial cocfficient

defined in (1.7-4) as
Ny N (2.5-2)
k kYN — k)

y can be applied to the Bernoulli trial experiment of Chapter
I. It applics to many gamcs of chance, detection problems in radar and sonar,
and many cxperiments having only two possible outcomes on any given trial.

By integration of (2.5-1), the binomial distribution function is found:

Fyx) = i (N> *1 - W rfx — k) (2.5-3)
X)) = X P P S .

k=0

The binol.ni:\l densit

Figure 2.5-1 illustrates (he binomial density and distribution functions for

N = 6and p =025

T Aty B e LT

© fx(x)
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0.3560
0.2966
0.3}
0.1780 0.1318
0.0330
0.0044 0.0002
) I 1
0 1 2 3 4 S 6 x
(a)
Fx(x)
1ok 0.9624 0.9954 0.9998 1.0000
0.8}06
0.5340
Q.5
J.1780
5 |l 1 A z L 1 Figure 2.5-1 Binomial density (a) and
2 3 4 5 6 x  distribution (b) functions for the case
) N = 6 and p = 0.25.
Poisson

The Poissont random variable X has a density and distribution given by

) k
fi) = e T 2o = (2.5-4)
k=0 .
o0 bk
Fabx)=e™ 3 ulx =K (2.5-5)
k=Q

where b > 0 is a rcal constant. When plotted, these functions appear quite similar
to thosc for the binomial random variable (Figure 2.5-1). In fact, it N— oo and
p— 0 for the binomial case in such a way that Np = b, a constant, the Poisson
case results. ;

The Poisson random variable applies to a wide variety of counting-type
applications. It describes the number of defective units in a sample taken from a
production line, the number of telephone calls made during a period of time, the

t After the French mathematician Siméon Denis Poisson (1781-1840).
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number of electrons emilted {rom a small section of a cathode in a given time
interval, etc. If the time interval of interest has duration T, and the events being
counted are known to occur at an average rate 4 and have a Poisson distribu-
tion, then b in (2.5-4) is given by

b=AaT (2.5-6)
We illustrate these points by means of an example.

The

Example 2.5-1 Assume automobile arrivals at a gasoline station are Poisson
and occur at an average rate of 50/h. The station has only one gasoline
pump. If all cars are assumed to require one minute to'. obtain fuel, what is
the probability that a waiting line will occur at the pump?

A waiting line will occur if two or more cars arrive in any one-minute
interval, The probability of this event is one minus the probability that either
none or one car arrives. From (2.5-6), with 1 = 3%/, cars/minute and T = |
minute, we have b = %, On using (2.5-5)

Probability of a wailing line = 1 — Fy(1) — F,(0)
= | - 0'5/6[1 + -g:l = 0.2032

We therelore expect a line at the pump about 20.32% of the time.

Uniform

The uniform probability density and distribution functions are defined by:

_Jib—a) asxsb
Jxlx) = {0 clsewhere (2.5-7) |
0 x<a
Fy(x)y={(x—a)(b—a) a<x<b (2.5-8)
l bsx

for real constants —o0 < a < 0 and b > a. Figure 2.5-2 illustrates the behavior
of the above two functiohs.

The uniform density finds a number of practical uses, A particularly impor-
tant application is in the quantization of signal samples prior to encoding in
digital communication systems. Quantization amounts to “rounding off ” the
actual sample to the nearest of a large number of discrete “ quantum levels.” The
errors introduced in the round-ofT process are uniformly distributed.

3 am e
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Nitx)

(b = a)

(a)

]
|
|
|
|
L Figure 2.5-2 Uniform probubility dcns.ity
0 a b X function (a) and its distribution function
(&) (h).
Exponential

The exponential density and distribution functions are:

l » = (x—aljb ]
S =<b ¢ ' (2.5-9)
0 x<a
| —g~tx-a® x>a (2.5-10)
Falx) = {0 x<a

for real numbers — oo < a < o and b > 0, These functions are plotted in Figure
2.5-3. o ' . '

The cxponential density is useful in describing raindrop sizes when a large
number of rainstorm measurements are made. It is also known to appx:oxxmalcly
describe the fluctuations in signal strength received by radar from certain types of
aircraft as illustrated by the following example.

Example 2.5-2 The power reflected from an aircraft of complicated shape

that is received by a radar can be described by an exponential random vari- -

able P, The density of P is therefore

1
.._e'PIl"o P>0

Je(p) =< Py
0 p<0

-

i
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Seix)

LY

—

b

(@)

| - etx-ati®

0 a X Figure 2.5-3 Exponential density
12 {a) and distribution (b) functions.

where P, is the average amount of received power. At some given time P
may have a value different from its average value and we ask: what is the
probability that the received power is larger than the power received on the

average?
We must find P{P > Po} =1— P{P S Po}=1- Fp(P). From (2.5-10)

P{P>Po}=1—-(1- g~ PoPoy = ¢~ = 0.368
In other words, the received power is larger than its average value about 36.8
per cent of the time.

Rayleigh
The Rayleigh‘f density and distribution functions are:
2
2y — qle- X
fay =5 aje x2a (2.5-11)
0 x<a
| — g txonp xza
Fylx) = { (2.5-12)
0 x<a

t Named for the English physicist John Willinm Steutl, Lord Rayleigh (1842-1919).
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fxlx)

0.607 /Z
b

n a a+/-b; x

(a)

0 a at

N

2 Figure 2.5-4 Rayleigh density (a)
(b) and distribution () functions.

for real constants —o0 <a<® and b > 0. These functions are plotted in

Figure 2.5-4.
The Rayleigh density describes the envelope of one type of noise when passed

through a bandpassfilter. It also is important in analysis of errors in various
measurement systems.

2.6 CONDITIONAL DISTRIBUTION AND
DENSITY FUNCTIONS

The concept of conditional probability was introduced in Chapter 1. Recall that,
for two events A and B where P(B) # 0, the conditional probability of 4 given B

had occurred was

P(A|B) = f@ﬁ%ﬂ. (2.6-1)

In this scction we extend the conditiona! probability concept (o include random

variables.
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Conditional Distribution

Lel 4 in (2.6-1) be identified as the event {X < x} for the random variatle X. The

resulting probability P{X < x| B} is defined as the conditional distribution func-
tion of X, which we denote Fy(x|B). Thus

P(X <xn B)

Falx|B) = PLX < 318} = =52

where we use the notation {X < x n B} to imply the joint event {X < x} n B,
This joint event consists of all outcomes s such that

X)) < x and seB (2.6-3)

The conditional distribution (2.6-;'2

) applies to discrete, continuous, or mixed
random variables.

Properties of Conditional Distribution

All the properties of ordinary distributions apply to Fy(x|B). In other words, it
has the following characteristics:

(1) Fy(—o0|B)=0 (2.6-4a)
(2 Fx(w|B)=1 (2.6-4b)
(3) O Fyx|BY< 1 (2.6-4¢)
(4) Fx(x,1B) < Fy(x,|B) il x,<x,; (2.6-4d)
() P{x, <X <x,|B} = Fy(x3|B) — Fy(x,| B) (2.6-4¢)
(6) Fx(x™|B) = Fy(x| B) (2.6-4f)

These characteristics have the same general meanings as described earlier follow-
ing (2.2-2). '

Conditional Density

In a manner similar to the ordinary density function, we define conditional density

Junction of the random variable X as the derivative of the conditional distribution

function. If we denote this density by f,(x| B), then

Jx(x|B) =

dF (x| B)
" (2.6-5)

If Fx(x| B) contains step discontinuities, as when X is a discrete or mixed random

variable, we assume that impulse functions are present in fi(x| B) to account for
the derivatives at the discontinuitics.

(2.6-2),
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Propertics of Conditional Density

Because conditional density is related to condilioqal distribq(ion lhr'ougl}nlhc
derivative, it satisfies the same properties as the ordinary density function. They
are:

(1) fx(x1B)20 , (2.6-6a)
¥)] J.m Sx(x|B) dx =1 (2.6-6b)
(3) Fy(x|B)= f Jx(1B) d¢ . (2.6-6¢)
(@) Plx, <X <x;|B) = I" Sxlx| B) dx (2.6-64)

We take an example to illustrate conditional density and distribution.

le 2.6-1 Two boxes have red, green, and blue balls in.thcm; tt}c num-
E:ra:)nfpballs of each color is given in Table 2.6-1. Our experiment will be to
select a box and then a ball from the selected box. One box (number 2{15
slightly larger than the other, causing it to b? select'cd more freq‘t‘lcntly. ;l
B, be the event “select the larger box” while B, is the event “select the
smaller box.” Assume P(B,) = ¥, and P(B;) = ¥%,. (B, and B, are mutuall){
exclusive and B, u B, is the certain event, since some box must be sclected;
therefore, P(B,) + P(B,) must equal unity.)
Now define a discrete random variable X to have values x; = 1, x, = 2,
and x5y = 3 when a red, green, or blue ball is selected, and let B be an event
equal to cither B, or B,. From Table 2.6-1:

5 80
PX =1|B=B)=10  P(X=1]8=DB)=1{1g
35 . 60
PX=2|B=B)=15  PX=2|B=8)=15
60 ! 10
P(X=3|B=B)=1 PX=3|B=B)=15

Table 2.6-1 Numbers of colored
balls in two boxes

Box
X, Ball color 1 2 Totals
1 Red 5 80 85
2 Green 35 60 95
3 Blue 60 10 70
Tolals 100 150 250
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The conditional probability density Sx(x|B,) becomes
5 35 60
Sx(x|By) = 100 Sx -1+ 100 S(x—2) + 00 3(x —3)

By direct integration of fx(x|B,):

5 35 60
Fx|B,) = —5 uix —1 4 ——ulx—2 +— u{x — 3
(1 By) = o i = 1)+ g o = ) g5 1 = 3
Fyto) or Fylxify)
1.000
1.0
0.827 !
| Fx(x}
%
0.437 ~0_..420 _!
ll S Ryt
1
0.050 |
=== 1
0 | 2 3 x
(a)
fx("m|)
0.600
0.6 {
0.4 0.350
0.2
0.050
0 1 2 3 X
(2]
[x(x)
0.437
0.4 0.390
0.2 0.173
t Figure 2.6-1 Distributions (a)and den-
0 | 2 3 x  sities () and (c) applicable to fxams
() ple 2.6-1.
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For comparison, we may find the density and distribution of X by deter-
mining the probabilities P(X = 1), P(X =2), and P(X = 3). These are found
from the total probability theorem embodied in (1.4-10):

P(X = 1) = P(X = 1| B)P(B,) + P(X = 11B,)P(B,)

s (2\ 80 (8
3 (A B (L) =04
100<1o)+150(10> 0437

35 (2 60 (8
PX =2)=7 <1o> +1—5(—)<ﬁ> = 0.390

60 (2 10 (8
P(X =3) —.]_?)(-1—0> +-ﬁa <-1-6> =0.173

[(x) = 0437 8(x — 1) + 0390 8(x — 2) + 0.173 8(x = 3)

Thus

and
Fy(x) = 0.437u(x — 1) + 0.390u(x — 2) + 0.173u(x - 3)

These distributions and densities are plotted in Figure 2.6-1.

*Methods of Defining Conditioning Event

The preceding example illustrates how the conditioning event B can be defined
from some characteristic of the physical experiment. There are several other ways
of defining B (Cooper and McGillem, 1971, p. 61). We shall consider two of these

in detail.
In one method, event B is defined in terms of the random variable X. We

discuss this case further in the next paragraph. In another method, cvent B may
depend on some random variable other than X. We dJiscuss this case further in

Chapter 4. ]
One way lo define’event B in terms of X is tolet

B={X <b) (2.6-7)

where b is some real number —o0 < b < 0. After substituting (2.6-7) in (2.6-2),
we gett ’

P(X<xnXsgb}
SX =Y (2.6-8)

Fyx|X <b)=P{X s x|X b} =

1 Notation vsed has allowed for deletion of some braces for convenicnce. Thus, Fy(x]{X S b})is
writien Flx] X < b)and P({X < x) A (X < b)) becames PXsxn X<h).

~
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for all events {X < b} for which P{X < b} # 0. Two cases must be considered;
one is where b < x; the second is where x < b If b < x, the cvent {X < D) is a
subset of The evenT (X Z X, 50 (X s x} n {X < b} = {X < b). Bquation (2.6-8)
becomes

_PX<sxnX<b) P{X<b)
Fxel X < b = == 2 b “P(Xx<b)}

1 bs<x (269

When x<b the event {X <x} is a subset of the event {X <b}, so
{X <x} n {X b} = {X < x} and (2.6-8) becomes

PIX<xnXsb) P{X<x} Fy(x)

Fy(x|X <b) = = = <b (26-1
X SD)===prr <l ~Pxso "R <P @610
By combining the [ast two expressions, we obtain ‘
Fy(x)
= <b
Fx1X <b)={Fb) ~ 26-11)
1 b<sx
Fx(x|X &) or Fy(x)
g =
™~ Fx(xIX < 6)
———
[ b x
(a)
[x (xIX < b)or fx(x)

Sx(xiX <b)

Ix(x)

0 b x
)

Figure 2.6-2 Possible distribution functions (a) and density functions (b) applicable to a conditioning
event B (X 5 b).
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I'he conditionad density function derives from the derivative of (2.6-11):

L) A,
Sex) X sby={Fxb) [ry fx(x)dx (2.6-12)
0 x=b

Figure 2.6-2 sketches possible functions representing (2.6-11) and (2.6-12).

From our assumption that the conditioning cvent has nonzero probability,
we have 0 < Fy(b) < 1, so the expression of (2.6-11) shows that the conditional
distribution function is never smaller than the ordinary distribution function;

Fy(x1X < b) 2 Fy(x) (2.6-13)

A similar statement holds for the conditional density function of (2.6-12)
wherever it is nonzero:

SxlxlX < b) 2 fy(x) x<b Yo(2.6-14)

The principal results (2.6-11) and {2.6-12) can readily be extended to the more
general event B = {a < X < b} (sce Problem 2-39).

Example 2.6-2 The radial *'miss-distance” of landings from parachuling sky
divers, as measurcd from a target’s center, is a Rayleigh random variable
with & = 800 m? and « = 0. From (2.5-12) we have

Fy(x) = [1 = e~ *8007(y)

The target is a circle of 50-m radius with a bull's eye of 10-m radius. We find
{the probability of a parachuter hitting the bull’s eye given that the landing is
on the target,
The required probability is given by (2.6-11) with x = 10 and b = 50:
P(bull’s eyc|landing on target) = Fy(10)/F 4(50)
= (l — L’- IOOIHOO)/(I - L,-IS()()/K()()) - 0'122()

Parachuter accuracy is such that about 12.29% of landings falling on the
target will actually hit the bull’s cye.

PROBLEMS

2-1 The sample space for an experiment is § = {0,- 1, 2.5, 6}. List all possible
values of the following random variables:
(@) X =2s
(b) X =552~ 1|
(¢) X = cos ns)
(d)y X =(1 —=3s)7!
2-2 Work Problem 2-1for § = {-2 < s < 5}.

[T
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2-3 Given that a random variable X has the following possible valucs, state il X
is discrete, continuous, or mixed.

(@) {-20 <x < =5}

h {10, 12 <x < 14, 15,17}

{c) {—10fors>2and Sfors< 2, where | < s < 6}

@ {4,3.1,1, -2}

2-4 A random variable X is a function. So is probability P. Recall that the
domain of a function is the sct of values its argument may take on while its range
is the sct of corresponding values of the function. In terms of scls, cvents, and
sumple spaces, state the domain and range for X and P,

2.5 A man matches coin {lips with a {riend. He wins $2 if coins match and loses
$2 if they do not match. Sketch a sample space showing possible outcomes for
this experiment and illustrate how the points map onto the real linc x that defincs
the vatucs of the random variable X = “dollars won on a trial.” Show a sccond
mapping for a random yariable Y = *dollars won by the fricnd on a trial.”

2-6 Temperature in a given city varics randomly during any year from —21 to
49°C. A housc in the cily has a {hermostat that assumes only three positions: 1
represents “call for fieat below 18.3°C." 2 represents “dead or idle zone,” and 3
represents “call for aic conditioning above 21.7°C." Draw a sample space for
this problem showing the mapping nccessary o definc a random variable
X =" thermostat setting.”

2-7 A random voltage can have any value defined by theset S ={a<s s b). A
quantizer divides S into 6 equal-sized contiguous subscts and gencrales a voltage
random variable X having values {—4, =2, 0, 2, 4, 6. Each valuc of X is equal
to the midpoint of the subset of S from which it is mapped.

{a) Sketch the sample space and the mapping to the linc x that defines the
values of X.

(b) Find a and b.

*2.8 A random signal can have any voltage value (at a given time) defined by the
set S={1py<sS ay}, where ao and ay are real numbers and N is any integer
N > 1. A voltage quantizer divides S into N equal-sized contiguous subsets and
converts the signal level into one of a set of discrete levelsa,, n=1,2..., N, that
correspond to the “input” subsets {a,-; <$ S a,). The set {aj, az,...s ay) can
be taken as the discrete values of an “output” random variable X of the quan-
tizer. If the smallest “input” subsct is defined by A =a; — ao and other subsets
by a, = do-y = 2" 1A, detcrmine A and the quantizer levels a, in terms of ag, ax,
and N.

2-9 An honest coin is tossed three times.

{a) Sketeh the applicable sample space S showing all possible clements.
Let X be a random variable that has values representing the number of
heads oblained on any triple toss. Sketch the mapping of § onto the real line
defining X.

(b) Find the probabilities of the values of X.

2-10 Work Problem 2-9 for a biased coin for which p{hcad} = 0.6.
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2-11 !{gsislor R, in Figure P2-11 is randomly selected from a box of resistors
conlaining 180-0, 470-Q, 1000-0, and 2200-Q resistors. All resistor values have
the same likelihood of being selected. The voltage E, is a discrete random vari-

: « able. Find the set of values E, can have and give their probabilities.

R, =820Q

E, i

o Figure P2-11

2.12 Bolts made on a production linc are nominally designed to have a 760-mm
length. A go-no-go testing device eliminates all bolts less than 650 mm and over
920 mm in length. The surviving bolts are then made available for sale and their
lengths are known to be described by a uniform probability density function.
A cerlain buyer orders all bolts that can be produced with a +5% tolerance
about the nominal length. What fraction of the production line's output is he
purchasing?

2-13 Find and sketch the density and distribution functions for the random vari-
ables of parts (a), (b), and (c) in Problem 2-1 if the sample spacc elements have
cqual likelihoods of oceurrence.
2-14 Il temperature in Problem 2-6 is uniformly distributed, sketch the density
and distribution functions of the random variable X,
2-15 For the uniform random variable defincd by (2.5-7) find:

(a) P{0.9a + 0.1b < X 5 0.7a + 0.3b}

(b) P{la+b)2<X < b}
2-16 Determine which of the following are valid distribution functions:

| —e™*? x>0
(a) Gylx) =
' x<0
0 x<0
(b) Gylx) = {05+ 05 sin [n(x — 1)/2] 0<x<?

1 x22
. .
(€) Gxlx)= p [1{x — a) — u(x — 2a)]
2-17 Dectermine the real constant a, for arbitrary real constants m and 0 < b,

such that
Ju(x) = ae~lx-mit

is 2 valid density function (called the Laplacet density).

1 After the French mathematician Marquis Pierre Simon de Laplace (1 749-1827).
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2-18 An intercom system masler stalion provides music to six hospital rooms.
The probability that any one room will be switched on and draw power at any .

time is 0.4. When on, a room draws 0.5 W.

(@) Find and plot the density and distribution functions for the random vari-
able ** power delivercd by the master station.”

(b) If the master-station amplifier is overloaded when more than 2 W is
demanded, what is its probability of overload?

*2-19 The amplifier in the master station of Problem 2-18 is replaced by a 4-W '..

unit that must now supply 12 rooms. Is the probability of overload better than if
two independent 2-W units supplied six rooms each?

2-20 Justify that a distribution function F(x) salisfies (2.2-2a, b, c).

221 Use the definition of the impulse function to evaluate the following
integrals, i
(Hint: Refer to Appendix A.) '

4
(a) J (3x? + 2x — 4)3(x — 3.2) dx
3

(b) j ? cos (6nx)d(x ~ 1) dx

-

© J' “ 245(x — 2) dx
o XY+ 3x2 42

(ht J’w O(x = xg)e Iux (x

3
(e) J. u(x — 2)6(x — 3) dx
-3

2-22 Show that the properties of a density function fy(x), as given by (2.3-6), arc
valid.
2-23 For the random variable defined in Example 2.3-1, find:
(a) P{xo ~ 0.6a < X < xo + 0.3a}
(b) P{X = xo}
2-24 A random variable X is gaussian with ay = Oand oy = 1.
(a) What is the probability that | X | > 27
(b) What is the probability that X > 27

2-25 Work Problem 2-24 if ay = 4 and oy = 2.

226 For the gaussian density function of {2.4-1), show that

J.w xfx(x) dx = ax

-

t The quantity / is the unit-imuginary; that is, j = /= 1.
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2-27 For the gaussian density function of (2.4-1), show that
j (x = ax)fx(x) dx = o}
-

2-28 A production line manufactures 1000-Q resistors that must satisfy a 10%
tolerance,

{a) If resistance is adequately described by a gaussian random variable X for
which ay = 1000 Q and gy = 40 Q, what fraction of the resistors is expected to be
rejected?

(b) if a machine is not properly adjusted, the product resistancés change to
the case where ay = 1050 Q (5% shift). What fraction is now rejected ?

2-29 Cannon shell impact position, as measured along the line of fire from the
target point, can be described by a gaussian random variable X. It is found that
15.15% of shells fall 11.2 m or farther from the target in a direction toward the
cannon, while 5.05% fall farther than 95.6 m beyond the target. What arc ay and
ay for X?

2-30 (a) Use the exponential density of (2.5-9) and solve for I, defined by.

= f " Xy d

(b) Solve for I, definced by

1, =j Xfy(x) dx
©
{¢) Verify that I, and I, salisfy the equation /, — I3 = b2,
2-31 Verify that the maximum value of fy(x) for the Rayleigh density function of
(2.5-11) occurs at x =a + \/172. and is equal to \/573 exp (— ') ~ 0.607@.
This value of x is called the mode of the random variable. (In general, a random
variable may have more than one such value—explain.)
2-32 Find the value x=x, of a Rayleigh random variable for which
P{X < xo} = P{xq < X}. This value of x is called the median of the random vari-
able.
2-33 The lifetime of a system expressed in weeks is a Rayleigh random variable
X for which
(x/200)e %1400 0 < x

Julxy= {o x<0

(a) What is the probability that the system will not last a full week?
(b) What is the probability the system lifctime will exceed one year?
2-34 The Cauchyt rapdom variable has the probability density function

Ji) = 2L

b* + (x = a)?

t After the French mathematician Augustin Louis Cauchy (1789-1857),

e
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for real numbers 0 < b and — 0 <a < 0. Show that the distribution function of

Xis
. 11 o fx—u
Fy(x) = 3 + - tan ( b )

2-35 The Log-Normal density function is given by
exp {—[In (x = b) — ax]*/20}}

Jx(x¥) = ﬁ;ax(x —b)
0 x<b

x2b

for real constants 0 <oy, —c0 <ay <o, and —o0 <b < o, where In (x)
denotes the natural logarithm of x. Show that the corresponding distribution
function is

ln(x—-b)-—ax]
F| ————— x2b
Fy(x) = [ Ox

0 x<b

where F(+)} is given by (2.4-3). ,
2-36 A random variable X is known to be Poisson with b = 4.
(a) Plot the density and distribution functions for this random variable.
(b) What is the probability of the event 0= X <517
2-37 The number of cars arriving at a certain bank drive-in window during any
{0-min period is a Poisson random variable X with b = 2. Find:
(a) The probability that more than 3 cars will arrive during any 10-min
period.
i(b) The probability that no cars will arrive.
2.38 Rework Example 2.6-1 to find fy(x|B,) and Fy(x|B,). Sketch the two
functions.
*2.39 Extend the analysis of the text, that leads to (2.6-11) and (2.6-12), to the
more general event B={a < X < b}. Specifically, show that now

0 x<a

Fx(x) = Fx(a)

Fy(xfa<X sb)= F(b) = Fa(@ agsx<b

1 bsx

and
0 x<a

Sx(x) L)
flxla < X $B) = 4 Tl = L) dx

0 b<sx

a<x<h

THE RANDOM VARIABLE 63

*2.40 Consider the system having a lifetime defincd by the random variable X in
Problem 2-33. Given that the system will survive beyond 20 weeks, find the prob-
ability that it will survive beyond 26 weceks.

ADDITIONAL PROBLEMS

2-41 A sample space is defined by S = {1,2<5<3, 4, 5}. A random variable is
defined by: X =2 for 0<s<25 X=3 for 25<5<3.5, and X =35 for
35<s5s<6.

(a) Is X discrete, continuous, or mixed?

(b) Give a set that defines the values X can have.

2-42 A gambler flips a fair coin three times.

(a) Draw a sample space S for this experiment. A random variable X rep-
resenting his winnings is defined as follows: He loses $1 if he gets no heads in
three flips; he wins $1, $2, and $3 if he obtains 1, 2, or 3 heads, respectively. Show
how elements of $ map to values of X. :

(b) Whal are the probabilities of the various values of X7
2-43 A function Gx(x) = a[l + (2/m) sin™! (x/c)] rect (x/2¢) + (u + bju(x — ¢) is
defined for all ~o0 < x < co, where ¢ > 0, b, and a are real constants and rect (+)
is defined by (E-2). Find any conditions on a, b, and c that will make Gx(x) a
valid probability distribution function. Discuss what choices of constants corre-
spond to a continuous, discrete, or mixed random variable.

2-44 (a) Generalize Problem 2-16(a) by finding values of real constants a and b
such that

Gx(x) = [1 — a exp'(—x/b)]u(x)
is a valid distribution function. '
(b) Are there any values of a and b such that G,(x) corresponds to a mixed

random variable X? .
2-45 Find a constant b > 0 so that the function

: e¥/4  0<x<b
\1 Sulx) = {0 / cliwhfrc
is a valid probability density.
2-46 Given the function

- gx(x) = 4 cos (nx/2b) rect (x/2b)

find a value of b so that gx(x) is a valid probability density.
2-47 A random variable X has the density function
Sx(x) = (Y)u(x).exp ("X/?)
Define cvents 4 = {1 < X <3}, B={X <25}, and C=A n B. Find the prob-
abilities of events (a) 4, (b) B, and (c) C.
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*2-48 Let (x) be a continuous, but otherwise arbitrary real function, and lct «
and b be real constants. Find G(a, b) defined by

Gla, b) = fw ¢(x) d(ax + b) dx

(Hint: Use the definition of the impulse function,)

2-49 For r.cal ct_)nstan(s b>0,c>0, and any g, find a condition on constant a
and a relationship between ¢ and a (for given b) such that the function

all = (x/b 0
fx(x)={ [1~(x/b)] Osxsc
0 elsewhere
is a valid probability density.
2-50 A gaussian random variable X has ay = 2, and oy = 2.
{a) Find P{X > 1.0}.
(b} Find P{X < —1.0}.
s Ao .
?-Sl In a certain “junior olympics, javelin throw distances are well approx-
1n3ulcd by a guussiun distribution for which ay = 30 m und gy = 5 m. In u quali-
fying round, contestants must throw farther than 26 m to qualify. In the main
event the record throw is 42 m.
(a) What is tl:te probability of being disqualified in the qualifying round?
(b) In the main event what is the probability the record will be broken?
2-5? Suppose height to the bottom of clouds is a gaussian random variable X for
w!uch ay = 4000 m, and gy = 1000 m. A person bets that cloud height tomorrow
will fall in the set A = {1000 m < X < 3300 m} while a second person bets that

height will be satisfied by B = {2000 m < X < 4200 m}. A third person bets they
are both correct. Find the probabilities that each person will win the bet.

2-53. Let X be a Rayleigh random variable with a = 0, Find the probability that
X will have values larger than its mode (see Problem 2-31).

2-54 A certain large city averages three murders per week and their occurrences
follow a Poisson distribution. '

{(a) What is the probability that there will be five or more murders in a given
week ?

(b) On the average, how many weeks a year can this city expect to have no
murders?

(¢) How many weeks per year (average) can the city expect the number of
murders per week (o equal or exceed the average number per week ?

" 2-55 A certain military radar is set up at a remote site with no repair facilitics. If
the radar is known (o have a mean-time-between-failures (MTBF) of 200 h find
the probability that the radar is still in operation one week later when picked up
for maintenance and repairs.

2-56 If the radar of Problem 2:55-is permanently located at the remote site, find
the probability that it will be operational as a function of time since its set up.

R S L R TR, - ~X S SURNSY S LA AP
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2-57 A computer undergoes down-lime if a certain critical component fails. This
component is known to fail at an average rate of once per four weeks. No signifi-
cant down-lime occurs if replacement components are on hand because repair
can be made rapidly. There arc three components on hand and ordered replace-
ments are not due for six weeks.

(a) What is the probability of significant down-time occurring before the
ordered components arrive?

(b) If the shipment is delayed two weeks what is the probability of significant
down-time occurring before the shipment arrives? .

*2.58 Assume the lifelime of a laboratory rzsearch animal is defined by & Raylcigh
density with @ = 0 and b = 30 weeks in (2.5-11) and (2.5-12). If for some clinical
reasons it is known that the animal will live at most 20 weeks, what is the prob-
ability it will live 10 weeks or less?

*2.59 Supposc the depth of water, measured in meters, behind a dum is described
by an exponential random variable having a density

S(x) = (1/13.5) exp (—x/13.5)

There is an cmergency overllow at the top of the dam that prevents the depth
from exceeding 40.6 m, There is a pipe placed 32.0 m below the overflow (ignore
the pipe’s finite diameter) that feeds water to a hydroelectric generator.

(@) What is the probability that water is wasted through emergency over-
flow?

(b) Given that water is not wasted in overflow, what is the probability the
gencrator will have water to drive it?

{¢) What is the probability that water will be too low to produce powe !

*2.60 In Problem 2-59 find and sketch the distribution and density functions of
water depth given that water will be deep enough to generale power but no water
is wasled by emergency overflow. Also sketch for comparisons the distribution
and densily of water depth without any conditions?

*2-61 In Example 2.6-2 a parachuter is an “expert™ if he hits the bull's eye. If he
falls outside the bull's eye but within a circle of 25-m radius he is called
“qualified " for competition, Given that a parachuter is not an expert but hits the
target what is the probability of being * qualified?”
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OPERATIONS ON
ONE RANDOM| VARIABLE—EXPECTATION

3.0 INTRODUCTION

The random variable was introduced in Chapter 2 as a means of providing a sys-
tematic definition of events defined on a sample space. Specifically, it formed a
mathematical model for describing characteristics of some real, physical world
random phenomenon. In this chapter we extend our work to include some
important operations that may be performed on a random variable, Most of these
operations are based on a single concept-—expectation.

3.1 EXPECTATION

Expectation is the name given to the process of averaging when a random vari-
able is inyolved. For a random variable X, we usc the notation E[X], which may
be read “ the mathematical expectation of X," * the expected value of X" “the
mean value of X,” or “the statistical average of X." Occasionally we also use the
notation X which is rcad the same way as E[X]; that s, X = E[X].t

Nearly cveryone is familiar with averaging procedures. An cxample thatl
serves to lic a familiar problem to the new concept of expectation may be the
casicst way to proceed.

1 Up to this point in this hook an overbar represented the complement of a set or event, Hence-
forth, unless specifically stated otherwise, the overbar will always represent amein value.
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Exzmple 3.1-1 Ninety people are randomly sclected and the fractional dollar

value of coins in their pockets is counted. If the count goes above a dollar,

the dollar valuc is discarded and only the portion from 0¢ (0 99¢ is accepted.

It ic found that 8, 12, 28, 22, 15, and § people had 18¢, 45¢, 64¢, 72¢, 774, and

95¢ in their pockets, respectively. .
Our everyday experiences indicate that the average of these values is

8 12 28 22
Average § = 0.18(5—0) + 0.45<§6> + 0.64(6(-)) + 0.72<§6>

15 5
+ 0.77(-9—0-) + 0.95<%)

~ $0.632

Expected Value of a Random Variable

The everyday averaging procedure used in the above example carries over
directly to random variables. In fact, if X is the discrete random variable
“fractional dollar value of pocket coins,” it has 100 discrete values x; that oceur
with probabilities P(x)), and its expected value E[X] is found in the same way as
in the example:

100

E[X]= l;x, P(x)) G.1-1)

The values x, identily with the (ractional dollar valucs in the example, while P(x))
is identified with the ratio of the number of people for the given dollar value to
the total number of people. If a large number of people had been used in the
“sample” of the example, all fractiona! dollar values would have shown up and
the ratios would have approached P(x,). Thus, the average in the example would
have become more like (3.1-1) for many more than 90 people.

In general, the expected value of any random variable X is defined by

E[X]=X=J

00

Xfx(x) dx (3.1-2)

Il X happens to be discrete with N possiblc values x; having probabilities P(x;) of
occurrence, then :

N
Sxx) = E P(x)d(x — x)) (3.1-3)
' (=1
from (2.3-5). Upon substitution of (3.1-3) into (3.1-2), we have
N
E[X]= Y. xP(x)  discrete random variable (3.1-4)
=1

Hence, (3.1-1) is a special case of (3.1-4) when N = 100. For some discrete
random variables, N may be infinite in (3.1-3) and (3.1-4).
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Example 3.1-2 We determine the mean value of the conlinuous, cxponen-
tially distributed random variable for which (2.5-9) applics:
1
={x=a)d
~¢ x>a
J(x) = {bh
0 x<a

From (3.1;2) and an inAt'c.g.ral from Appendix C: .

L) alb «©
E[X] =J .'Ee‘(x-n)lb dx __.e_b_ xe= P dx = a4+ b

If a random variable's density is symmetrical about a line x = a, then
E[X] = a; that is, !

E[X]=a il fylx+a) =fx(—x+;1) (3.1-5)

Expected Yalue of a Function of a Random Variable

As will be evident in the next section, many useful parameters relating to a
random variable X can be derived by finding the cxpected value of a real func-

tion g(+) of X. It can be shown (Papoulis, 1965, p. 142) that this expected value is
given by

) E[y(X)] = le g(x) f(x) dx

(3.1-6)
If X is a discrete random variable, (3.1-3) applies and (3.1-6) reduces to
N
E(g(X)) = 3 g(x)P(x)) discrete random variable (3.1-7)
j=t

where N may be infinite {or some random variables.

Example 3.1-3 It is known that a particular random voltage can be rep-
resented as a Rayleigh random variable V having a density function given by
(2.5-11) with @ = 0 and b = S. The voltage is applied to a device that gener-
ates a vollage Y = g(V) = ¥ that is equal, numerically, to the power in V (in
a 1-Q resistor). We find the average power in V by means of (3.1-6):

© 3
Power in V = E[y(V)] = E[V?*] = j 3'5’_ PRCLEIN
(4]
By lctting & = v?/5, d¢ = 2v dv/5, we obtain

Power in V=5I (e dE=5W
0
after using (C-46).
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*Conditional Expected Yalue

I, in (3.1-2), fx(x) is replaced by the conditional density fy(x|8), where I3 is any
event defined on the sample space, we have the conditional expected value of X,
denoted E[X | B]:

E[X|B] = J ? (x| B) dx (3.1-8)

- @0

One way to define event B, as shown in Chapter 2, is to let it depend on the
random variable X by defining

B={X <b) ~w<b<ow (3.1-9)
We showed there that
x| X < b) = j"_wf}i)(‘))c) = *<t (3.1-10)
0 xzb
Thus, by substituting (3.1-10) into (3.1-8):
HX1X 1) = b X0 X (3.1-11)

. Sxlx) dx

which is the mean value of X when X is constrained to the set {X < h}.

3.2 MOMENTS

An immediate application of the expected value of a function g{-) of a random
variable X is in calculating moments. Two types of moments are of interest, those
about the origin and those about the mean.

Moments About the Origin

The function

g(X) = X" n=012... (3.2-1)

when used in (3.1-6) gives the moments about the origin of the random variable
X. Denote the nth moment by m,. Then,

@«

m, =E[X"}= J x"fy(x) dx

-

(3.2-2)

Clearly my = 1, the area of the function fy(x), whilc m, = X, the expected value
of X.
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Central Moments

Momcnts about the mean valuc of X arc called central moments and are given the

symbol ji,. They are defined as the expected value of the function
gX)=(X - Xy n=012,.. (3.2-3)

which is
i, = E[(X ~- XM= JQ (x = X)fxlx) dx (3.2-4)

The moment gg = 1, the arca of fy(x), while yy = 0.(Why?)

Variance and Skew

The sccond central moment jt; is so important we shall give it the name variance
and the special notation o%. Thus, variance is given byt

al =y = EIX ~ X)) = r (x = R)(x) dx (3.2-5)

-

The positive squarc rool dy of variance is called the standard deviation of X i it is
a measure of the spread in the function fx(x) about the mean.
Variance can be found from a knowledge of first and sccond moments. By
expanding (3.2-5), we havel
ol = E[X? ~2%X + X3 = E[X*] —2RE[X)+ X?
= E[XY) - Xt=m;— m} (3.2-6)

Example 3.2-1 Let X have the exponential density function given in Example
1.1-2, By substitution into (3.2-5), the variance of X is

® oo |
o = J. (x—-X)? 3 et i

By making the change of variable &£ = x — £ we obtain

pm-an (o ' _
0'{:———1)—_-!’ fze'”" (lc=(ﬂ+b—z\')z+b1
-

i . .
t The subseript indicates that a} is the vanance of a random variable X. For a random variable ¥

its varianee would be al.
1 We use the fact that the expected value of A sum of functions of X cquals the sum of expected
vatues of individual functions, as the reader can readily verify s an cxereise,
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after using an integral from Appendix C. However, from Example 3.1-2, X =
E[X] = (a + D). s0

The reader may wish to verily this result by finding the sccond moment
E[X?] and using (3.2-6).

The third central moment gty = E[(X — X)*] is a mcasurc of the asymmelry
of fy(x) about x = X =m,. 1t will be calied the skew of the density function. If a
density is symmetric about x = X, it has zero skew. In fact, for this case jt, =0
for all odd values of n. (Why?) The normalized third central moment jiyfa is
known as the skewness of the density function, or, alternatively, as the coefficient
of skewness.

Example 3.2-2 We continue Example 3.2-1 and compute the skew and cocffi-
cient of skewness for the exponential density. From (3.2-4) with n =3 we
have

sy = E[X = R)%) = E[X° — IRXT+3RX - R)
-0 38X +28° = X3~ 38(0% + Ry +28°

Next, we have

—_— ®© 3
X3 = j -:—)- e~ x = @® + 3a%h + 6ab® + 6b°

after using (C-48). On substituting % =a-+ b and o} = b? from the carlicr
example, and reducing the algebra we find

pty = 2b°
i
. L‘_§= 2
Ox

This density has a relatively large cocfficicnt of skewness, as can be seen intu-
itively from Figure 2.5-3.

+33 FUNCTIONS THAT GIVE MOMENTS

Two [unctions can be defined that allow moments to be calculated for a random
variable X. They are the characteristic function and the moment gencrating
function.
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* Characteristic Function
The characteristic function of a random variable X is defined by
Oy (w) = E[e/“X] (3.3-1)

where j = (/—1. It is a {unction of the real number —00 < w < 0. If (3.3-1) is
written in terms of the density function, ®y{(w) is seen to be the Fourier transformt
(with the sign of w reversed) of fy(x):

Oy(w) = fm Sx(x)e’** dx (3.3-2)

Because of this fact, if ©y(w) is known, fy(x) can be found from the inverse Fourier
transform (with sign of x reversed)

. [ '
Jx(x) = Cp j D glew)e M dw (3.3-3)

By formal differentiation of (3.3-2) n times with respect to w and setting w = 0 in
the derivative, we may show that the nth moment of X is given by

d"®y(w)

m, = (—j)" do"

(3.3-4)

w=0

A major advantage of using ®,(w) to find moments is that ®,(w) always
exists (Davenport, 1970, p. 426), so the moments can always be found if ®,(w) is
known, provided, of course, the derivatives of ®,(w) exist.

It can be shown that the maximum magnitude of a characteristic function is
unity and occurs at w = 0; that is,

[ Dx(w)]| S Py(0) =1 (3.3-5)
(See Problem 3-24))

Example 3.3-1 Again we consider the random variable with the exponcntial

density of Example 3.1-2 and find its characteristic function and first
moment.

t Reuders unfumiliar with Fourier trunsforms should interpret @,(w) as simply the expected vulue
of the function g{X) = exp (jwX). Appendix D is included as a review for others wishing to refresh
their background in Fourier transform theory.
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By substituting the density function into (3.3-2), we get

@ | L,n/h @ b Jux
(l)".(m) = - e"‘(.\‘—n)/be}w.\!' dx = _1___ e < Iy
, 0 y S

Evaluation of the integral follows the use of an integral from Appendix C:
L,alb e L
Pxlw) ==~ [—(l/b i),

¢ Jou .

=(1/b=Jw)x

e jwb

The derivative of Gy(w) is

) B B Jb _:l
ey — - —
dw | —jwb (1 — jwb)

so the first moment becomes

d® y(w)
dw

=q+ b,

w=n0

my = (=)

in agreement with m, found in Example 3.1-2.

*Moment Generating Function

Another statistical average closely related to the characteristic function is the
moment generating function, defined by

M x(v) = E[e"™] (3.3-6)

where v is o real number — o < v < 0. Thus, M (v) is given by

My(v) = jw Sx(x)e"™ dx (3.3-7)

-

The main advantage of the moment generating function derives from ils
ability to give the moments. Moments are related to M y(v) by the expression:

(3.3-8)

va 0

The main disadvantage of the moment generating function, as opposed to the
characteristic function, is that it may not exist for all random variables. In fact,
M x(v) exists only if all the moments exist (Davenport and Root, 1958, p. 52).

.
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Example 3.3-2 To illustrate the calculation and use of the moment gener-

ating function, let us reconsider the exponential density of the carlier exam-

ples. On use of (3.3-7) we have

w
Mx(v) = [ 3 gt ahevE (x
A )
(?””' o
= j Av=mie gy
) (U
_ "ﬂl'
Tl —bv

In evaluating M y(v) we have used an integral from Appendix C.
Ry differentiation we have the first moment

dM x(v)
m, = 200 \V_o .
_ e™[a(t — bv) + b}

=7 (1 = by} =a+b

v=0

which, of coursc, is the same as previously found.

34 'l‘RANSFORMA'l'lONS OF A RANDOM VARIABLI
i

. . f . .
Quite often one may wish to transform (change) one random variable X into a
new random variable Y by means of a transformation

Y = T(X) (3.4-1)

Typically, the density function fx(x) of distribution function F(x) of X is known,
and the problem is to determine either the density function f¢(y) or distribution
function Fy(y) of Y. The problem can be viewed as a “black box " with input X,
output Y, and * transfer characteristic” Y = T(X), as illustrated in Figure 3.4-1.
Ih.gcncrnl, X can be a discrete, continuous, or a mixed random variable. In
turn, the transformation T can be lincar, nonlincar, segmented, staircase, clc.
Clcarly, therc arc many cases to consider in a general study, depending on the
form of X and T. In this section we shall consider only three cases: (1) X contin-
uous and T continuous and cither monotonically increasing or decreasing with
X; (X continuous and T continuous but nonmonotonic; (3) X discrete and T

X Y = T(X) Y
iy

felx)

Figure 3.4-1 Transformation of a random variable X
10 a new random variable Y.
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continuous. Note that the transformation in all three cases is assumed contin-
uous. The concepts introduced in these three situations arc broad enough that
(he reader should have no difliculty in extending them (o other cases (sec
Problem 3-32).

Monotonic Transformations of a Continuous Random Variable

A transformation T is calied monotonically increasing if T(x,) < T(x,) for any
X < Xxp.1tis monotonically decreasing if T(x,) > T(x,) for any x, < X3z.

Consider [irst the increasing ti< atign. We assume (hat T'is continuous
and differentiable at all values of x for which fy(x) # 0. Let Y have n particular
value yo corresponding to the particular value xo of X as shown in Figure 3.4-2a.
The two numbers are related by -

xo = T7'(yo) (3.4-2)

where T~ ! represents the inverse of the transformation T. Now the probability
of the event {Y < yo} must cqual the probability of the event {X < xo} because
of the one-to-one correspondence between X and Y. Thus,

Fy(ye) = P{Y < yo} = P{X < xo} = Fx(xo) (3.4-3)

Yo = T(x0) or

Figure 3.4-2 Monotonic trans-
formations: (a) increasing, and (b)
decreasing. [Adapted from Peebles
x (1976) with permission of publi-

shers Addison-Wesley, Advanced
(b) Book Program.)
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or

yo x0=T=1{yo)
j L) dy = j Sx(x) dx (3.4-4)

- =@

Next, we differentiate both sides of (3.4-4) with respect to y, using Leibniz's rulet
to get

700 = LT o) T2 (349
Since this result applies for any y,, we may now drop the subscript and wrile
s =rar-on (3.4-6
or, morc. com;.)actly;' ’
1) = 5 04

In (3.4-7) it is understood that x is a function of y through (3.4-2).

h A consideration of Figure 3.4-2b for the decreasing transformation verifies
that

Fylyo) = P{Y < yo} = P{X 2 xo} = I = Fy(x,). (3.4-8)

A rc?etitiqn o.f the steps leading to (3.4-6) will again produce (3.4-6) except that
the right side is negative. However, since the slope of T~!(y) is also negative, we
conclude that for either type of monotonic transformation

dT"(y)l

S =T (3.4-9)

or simply

Jr(y) = fxlx)

dx
y (3.4-10)

1 Leibniz's rul.c. after the great German mathematician Gottfried Wilhelm von Leibniz (1646~
1716), states that, if H{x, u) is continuous in x and u and

Biv)
G(u) =J. H(x, u) dx
a(u)"

‘thcn the derivative of the integral with respect to the parameter u is

dG v
2w i, 1) L — g,y 20 [ 2 )
di dt - L
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Exnmple 3.4-1 If we take T to be the tinear transformation Y = T(X) =
aX 4 b, where a and b are any real constants, thea X =77 HY)= (Y - D)u
and dx/dy = 1/a. From (3.4-9)

i) -A( b ")

Il X is assumed to be gaussian with the density function given by (2.4-1),

a

we get
) Uty ~byfa-ax)tj20x2 | |
fy(y) = g~y —bia ax)f2ox? | _ .
2not a
- __l____ e-(y-(au,\' +b)]3/2a2ax2
2nalal

which is the density function of another gaussian random variable having
ay=aay+b and o} =a%c}

Thus, a linear transformation of a gaussian random variable produces another

gaussian random variable. A linear amplifier having a random voltage X as ils

input is one example of a linear transformation,

Nonmonotonic Transformations of a Continuous Random Variable

A transformation may not be monotonic in the more general case, Figure 3.4-3
illustrates one such transformation. There may now be more than one interval of
values of X that correspond to the event {V < yo}. For the value of y, shown
in the figure, the event {Y < yo} corresponds to the event {X < xy and x, <
X < x,}. Thus, the probability of the event {Y < yo} now cquals the probability

y=Tx)

Figure 3.4-3 A nonmonotonic
transformation. [Adapted from
Pecbles (1976) with permission
of publishers Addison-Wesley,
Advanced Book Program.]
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of the event {x values yiclding Y < Yo}, which we shall write as {x|Y £ yo}- In
other words

FY(}’o)=P{Y5,Vo} = P{x|Y S ¥} = j. Sx(x) dx (34-11)
(x1Y S yo)

Formally, onc may differentiate to obtain the density function of Y

- 1 ?
o0 =7 j Stx) dx (34-12
Yo Jixir syal

Although we shall not give a proof, the density function is also given by
(Papoutlis, 1965, p. 126)

fx(xn)
=Y —t— 4-13
10 = e (34-19)
FER -
where the sum is taken so as to include all the roots X, n = 1,2, ..., which are
the real solutions of the cquation?
y = T(x) (3.4-14)

We illustrate the above concepts by an example.

Example 3.4-2 We find fy(y) for the squarc-law transformation
Y = T(X) = cX?

shown in Figure 3.4-4, where c is a real constant ¢ > 0. We shall use both the
procedure leading to (3.4-12) and that leading to (3.4-13).

In the former case, the event (Y < y} occurs when {—-\/y_/é's x <
\/3'_/;‘} = {x|Y < y}so (3.4-12) becomes

d (Y
=7 j L) e y20
Y J-o
Upon use of Leibniz's rule we obtain
d (-
L =fx(\/;'_/—c) '(—\dL;:/z‘) "fx("\/}ﬁ') f—(’syiy/é
JuJI9) + L= /910

2oy

y=0

t1fy = T(x) has no real roots for a given value of y, then fy(y) = 0.

OPEKAIONS ON ONE RANDOM VARIABLE-—EXI’ECTATION 9

ymex?

Figure 344 A square-law trans-
formation. [Adapted from Peebles
(1976) with permission of publishers
Addison-Wesley, Advanced  Book
x  Program.)

In the latter case where we use (3.4-13), we have X =4./Y/c, Y 20,50
x, = —Jyle and x, = J/y/c Furthermore, dT(x)/dx = 2¢x $O

AT | ey = —2¢ [2=
Ix lios, = 2cx, = —2c\/-z— —2\/2;
dT(x)

dx  |xmxa B 2\/2;

From (3.4-13) we again have

fx(\/;/_c).~+ Sx(= \/:v_/Z)
2J/¢

Jey

= y=0

Transformation of 8 Discrete Random Variable

If X is a discrete random variable while Y = T(X) is a continuous transfor-
mation, the problem is especially simple. Here

[(x) = ¥, Plx)d(x = x2) (3.4-15)

Fy(x) =3, Plxulx — X,) (3:‘4-16)

where the sum is taken to include all the possible values x,,0 =1, 2,...,of X.

If the transformation is monotonic, there is a one-to-one correspondence
between X and Y so that a set {ya) corresponds to the set {x,} through the equa-
tion y, = T(x,) The probability P(y.) equals P(x,). Thus,

£) = % POSly — 34 (34-17)

Fyy) = T, Puly = a) (3.4-18)
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where
Ya=T(x,) (3.4-19)
Ply,) = P(x,) (3.4-20)
If T is not monotonic, the above procedure remains valid except there now

exists the possibility that more than one value x, corresponds to a value Vao In

such a case P(y,) will equal the sum of the probabilities of the various x, for
which y, = T(x,). ' '

PROBLEMS

3-1. A discrctc‘random variable X has possible values x; =%, i=1, 2, 3, 4, 5,
which occur with probabilities 0.4, 0.25, 0.15, 0.1, and 0.1, respectively. Find the
mean value £ = E[X] of X.
3-2 The natural numbers are the possible values of a random variable X; that is
x,=n,n=1,2, ... These numbers occur with probabilities P(x ) = (ILY. Fi ’
the expected value of X, d () = (" Find
3-3 Il!' t.hc probabilities in Problem 3-2 are P(x,) =p", 0 <p < I, show that
p= '/, is the only value of p that is allowed for the problem as formulated.
(Hint: Use the fact that f2 fi(x) dx = 1 is necessary.)
34 Glyc an example of a random variable where its mean value might not equal
any of its possible values.
3-5 Find:

{a) the expected value, and

(b) the variance of the random variable with the triangular density of Figure
23-1aifa=1/a

3-§ Show that the mean value and variance of the random variable having the
uniform density function of (2.5-7) are:

X = E[X]=(a+b)2
and
ol =(b—a)*/12
?-7 A pointer is spun on a fair wheel of chance numbered from 0 to 100 around
its circumference,
(@) What s th‘c average value of all possible pointer positions?
(b) What deviation from its average value will pointer position take on the

average; that is, what is the pointer's root-mean-squared deviation from its
mean? (Hint: Use results of Problem 3-6.) .

3-8 Find:
(a) the mean value, and

(b) the variance of the random variable X defined by Problems 2-6 and 2-14
of Chapter 2,

OPERATIONS ON ONE RANDOM VARIABLE—EXPECTATION 81

*3.9 For the binomial density of (2.5-1), show that
E[X]=X=Np

and
ox = Np(l = p)

3-10 (a) Let resistance be a random variable in Problem 2-11 of Chapter 2, Find

the mean value of resistance.
(b) What is the output, voltage E, il an average resistor were used in the
circuit? ! .

(c) For the resistors specified, what is the mean value of E,?7+Does the
voltage of part (b) equal this value? Explain your results.
3-11 (a) Use the symmetry of the density function given by (2.4-1) to justify that
the parameter ay in the gaussian density is the mean value of the random vari-
able: X = ay.

(b) Prove that the parameter o} is the variance. (Hint: Use an cquation from
Appendix C.)
3-12 Show that the mean value E[X] and variance o of the Rayleigh rundom
variable, with density given by (2.5-11), are

E[X]) =u+ /nb/d

and
o} = b(d — n)/4

3-13 What is the expected lifetime of the system defined in Problem 2-33 of
Chapter 2?
3-14 Find:

(@) the mean value, and

(b) the variance for a random variable with the Laplace density

1
= — g-lx=mip
fx(x) 2b e

where b and m are real constants, b > 0 and —o0 < m < 00,
3-15 Determine the mean value of the Cauchy random variable in Problem 2-34
of Chapter 2. What can you say about the variance of this random variable?
*3.16 For the Poisson random variable defined in (2.5-4) show that:

(a) the mean value is b and

(b) the variance also equals b.
3-17 (a) Use (3.2-2) to find the first three moments my, m,, and my for the expo-
nential density of Example 3.1-2.

(b) Find m,, m;, and my from the characteristic function found in Example
3.3-1. Verify that they agree with those of part (a).
3-18 Find expressions for all the moments about the origin and central moments
for the uniform density of (2.5-7).
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3.19 Definc a function g(*) of a random variable X by

1 X2 X
X)=
o) {0 x < Xp

where x, is a real number — 00 < Xo < o0, Show that

E[g(X)] = 1 — Fx(xo}

3-20 Show that the sccond moment of any random variable X about an arbi-
trary point a is minimum when a = X that is, show that E[(X —a)l] is
minimum for a = X.

3-21 For any discrete random variable X with values x; having probabilities of

occurrence P(x)), show that the moments of X are

N
my= L XPx) i

[ERY
N
o= Y (x; = X)"P(x)
i=1
where N may be infinite for some X.

3-22 Prove that central moments p, are related to moments iy about the
origin by

e 3 (e

k=0

3-23 A random variable X has a density function fx(x) and moments M, . If the

density is shifted higher in x by an amount « > 0 to a new origin, show that the .

moments of the shilted density, denoted m,, are related to the moments i, by

my= T (;‘()a"‘*mk
k=0

*3.24 Show that any characteristic function O 4(w) satislies
[ Dx(w)| < Ox(0) = 1

3-25 A random variable X is uniformly distributed on the interval (—5, 15).
Another random variable Y = ¢~ X% is formed. Find E[Y].

3.26 A gaussian voltage random variable X [sce (2.4-1)] has a mean value X =
ay =0 and variance o} = 9. The voltage X is applied to a square-law, full-wave
diode detector with a (ransfer characteristic Y. = 5X* Find the mean value of the
output voltage Y.

*3.27 For the system having a lifetime specified in Problem 2-33 of Chapter 2,
determine the expected lifetime of the system given that the system has survived
20 weeks.
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%328 The characteristic function for a gaussian random variable X, having a
mean value of 0, is

Oy(@) = exp (~03 &)

Find all the moments of X using ©x(w)
*1.29 Work Problem 3.28 using the moment generating function

M) = exp (63 v*/2)

for the zero-mean gaussian random variable.
*3.30 A discrete random variable X can have N + 1 values x, = kA k=0,1,...
N, where A >0 is a real number. Its values occur with equal probability. Show
that the characteristic function of X is

1 sin [(N + Dwh/2] GNwb2
N+1 sin (wA/2)
3.31 A random variable X is uniformly distributed on the interval (— /2, 1/2). X
is transformed to the new random variable ¥ = T(X) = a lan (X), where a > 0.
Find the probability density function of Y.
3.32 Work Problem 3.31 if X is uniform on the interval (— 1, 7). ,
1.33 A random variable X undergoes the transformation Y = a/X, where a is a
real number. Find the density function of Y.
3.34 A random variable X is uniformly distributed on the interval (—a, a). It is
transformed to a new variable Y by the transformation Y = cX? defined in
Example 3.4-2. Find and sketch the density function of Y.
3.35 A zero-mean gaussian random variable X is transformed to the random
variable Y determined by

Ox(w) =

=cX X>0
0 X<0

where ¢ is a real constant, ¢ > 0. Find and sketch the density function of Y.

336 If the transformation of Problem 3-35 is applied to 2 Rayleigh random vari-
able with a = 0, what is its effect?

*3.37 A random variable © is uniformly distributed on the interval (8,, 6;) where
0, and 0, are real and satisfy

0<0,<0,<™

Find and sketch the probability density function of the transformed random vari-
able Y = cos (©).
3-38 A random variable X can have values —4, =1, 2, 3, and 4, cach with prob-
ability ‘. Find:

(a) the density function,

(b) the mean, and

(¢) the variance of the random variable Y = 3X3.
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ADDITIONAL PROBLEMS

3-39 (a) Find the average amount the gambler in Problem 2-42 can expect (o
win. (b) What is his probability of winning on any given playing of the game?
3-40 The arcsine probability density is defined by

rect (x/2a)

n/a? — x? ‘

for any real constant a > 0. Show that ¥ =0and X? = a*/2 for this density.

*3-41 For the animal described in Problem 2-58 find its expected lifetime given
that it will not live beyond 20 weeks. '

3-42 Find the expected value of the function g(X) = X> where X is a random
variable defined by the density :

Jxx) = (hu(x) exp (—x/2)

3-43 Continue.Problem 3-25 by finding all moments of Y. (Hint: Treat Y" as a
function of Y, not as 4 transformation.)
3-44 Reconsider the production line that manufactures bolts in Problem 2-12.

{(a) What is the uverage length of bolts that are placed up for sale?

(b) What is the standard deviation of length of bolts sold?

(c) What percentage of all bolts sold are expected to have a length within
one standard deviation of the average length?

(d) By what tolerance (as a percentage) does the average length of bolts sold
match the nominally desired length.of 760 mm?

3-45 A random variable X has a probability density

_ [(n/16) cos (nx/8) -4<x54
Jalx) = {0 elsewhere

Sx(x) =

Find: (a) its mean value X, (b) its second moment F, and (c) its variance.

3-46 A certain meter is designed to measure small dc voltages but makes errors
because of noise. The errors are accurately represented as a gaussian random
variable with a mean of zero and a standard deviation of 10~* V. When the dc
voltage is disconnected it is found that the probability is 0.5 that the meter

reading is positive due to noise. With the dc voltage present this probability
becomes 0.2514. What is the dc voltage?

3-47 Find the skew and coefficient of skewness for a Rayleigh random variable
for which a = 0in (2.5-11).

3-48 A random variable X has the density

ChiX—x?+8x—12) 2<x<6
0 elsewhere

' Silx) = {

Find the following moments: (4) mq, (b) m,, (¢) m,, and (d) Ha.

OPERATIONS ON ONE RANDOM VARIAUBLE —EXPECTATION 8D

3-49 The chi-square density with N degrees of [reedom is defined by
XN =1

S = e

where I{+) is the gamma function

u(x)e =2

I(z) = Jmﬁ"‘e“ d¢  realpartofz>0
¢]

and N =1, 2,....Show that () X = N, (b) X% = N(N + 2), and (c) o} = 2N for
“this density. ‘ ' —
3-50 For the density of Problem 3-49 find its arbitrary moment X" n=
0,1,2... . '
3.51 A random variable X is called Weibullt if its density has the form

Sx(x) = abx®~! exp (—ax"u(x)

where a> 0 and b> 0 are real constants. Use the definition of the gamma
function of Problem 3-49 to find (a) the mean value, (b) the second moment,

* and (c) the variance of X.

*3.52 Show that the characteristic function of a random variable having the bino-
mial density of (2.5-1) is
Dylw) = [1 — p + pe}"
*3.53 Show that the characteristic function of a Poisson random variable defined
by (2.5-4) is
Dy(w) = exp [—b(1 — ¢/)]

*3.54 The Erlangt random variable X has a characteristic function

a ¥
o=

.... Show that ® = N/a, X* = N(N + 1)/a?, and

for a>0 and N=1, 2,
2 = N/a. .
g:\’SS A/rundom variable X has ¥ = =3, X? =11, and o} =2. For a new
random variable Y = 2X — 3, find (a) ¥, (b) Y2, and (¢) o. '
*3.56 For any real random variable X with mean X and variance o}, Chebychev's
Inequality§ is
P{|1X — X| 2 Aoy} < 1/22

* where 1 > 0 is a real constant. Prove the inequality. (Hine: Define a new random

variable Y =0 for | X — X| < lay and ¥ = %% for [X — X| > Aoy, observe
that Y < (X — X)?* and find E[Y])

1 After Ernst Hjulmar Waloddi Weibull (1887~ - ), a Swedish upplied physicist.
B - ] ish engineer.

1 A. K. Erlung (1878-1929) was 0 Danis r

§ After the Russian mathematician Pafauty Lvovich Chebychev (1821-1894).
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O

3-57 A gaussian random variable, for which

Sxx) = @1/m) exp (= 4x7)
is applicd to a squarc-law device to producc a ncw (output) random variable
Y = X%2. (a) Find the density of Y. (b) Find thc moments m, = E[YM, n=
0, 1, .... (Hint: Put your answer in tcrms of the gamma function defined in
Problem 3-49.)
3-58 A gaussian random variable, for which X = 0.6 and gy =08, is trans-
formed to a new random variable by the transformation

CHAPTER

FOUR
'MULTIPLE RANDOM VARIABLES

. FN_"__ — B smmat

‘ 4 10X <0
; 2 0<X <10
. =T(X)=
I Y (X) -2 —-10< X <0
—4 —~—<X<—-10 '

{(a) Find the density function of Y.

(b) Find the mean and variance of Y.
3-59 Work Problem 3-31 except assume a transformation Y = T(X) = a sin (X)
with a > 0.
3-60 Let X be a gaussian random variable with density given by (2.4-1). If X is
transformed to a new random variable Y = b + e*, where b is a rcal constant,
show that the density of Y is log-normal as defined in Problem 2-35. This trans-
formation allows log-normal random numbers to be gencrated from gaussian
random numbers by a digital computer.
3.61 A random variable X is uniformly distributed on (0, 6). If X is transformed
to a new random variable Y = 2(X — 3)? — 4, find: (a) the density of Y, (b) ¥,
(c) o}.

Ex SNt

4.0 INTRODUCTION

'."\-’:5‘14: Air 5

Pk

In Chapters 2 and 3, various aspects of the theory of a single random variable
were studied. The random variable was found to be a powerful concept. It
cnabled many realistic problems to be described in a probabilistic way such that
practical measures could be applied to the problem even though it was random.
For cxample, we have seen that shell impact position along the line of fire from a
cannon to a target can be described by a random variable (Problem 2-29). From
knowledge of the probability distribution or density function of impact position,
we can solve for such practical measures as the mean value of impact position, its ,
variance, and skew. These measures are not, however, a complete enough descrip- ;
tion of the problem in most cascs. )

Naturally, we may also be interested in how much the impact positions ]
deviate from the line of fire in, say, the perpendicular (cross-fire) direction.In i
other words, we prefer to describe impact position as a point in a plane as ‘)

cay

e

I e

opposed to being a point along a line. To handle such situations it is necessary

that we extend our theory to include two random variables, one for each coordi-

nate axis of the plane in our example. In other problems it may be necessary to
extend the theory to include several random variables. We accomplish these “al
extensions in this and the next chapter. 'y

Fortunately, many situations of interest in engineering can be handled by the ‘

theory of two random variables.t Because of this fact, we emphasize the two-

variable case, although the more general theory is also stated in most discussions

to follow. o - :

S0 s

1 In particular, it will be found in Chapter 6 that such important concepts as autocorrelation, L
cross-correlation, and covariance functions, which apply to random processes, arc based on two c \
random variables. B
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4.1 VECTOR RANDOM VARIABLES

Suppose two random variables X and Y are defined on a sample space S, where
spgcific values of X and Y are denoted by x and y, respectively. Then any ordered
pair of numbers (x, y) may be conveniently considered to be a random point in the
xy plane. The point may be taken as a specific value of a vector random variable

or a random vector.t Figure 4.1-1 illustrates the mapping involved in going from . -

S to the xy plane.

The plane of all points (x, y) in the ranges of X and Y may be considered a
new sample space. It is in reality a vector space where the components of any
vector are the values of the random variables X and Y. The new space has been
called the range sample space (Davenport, 1970) or the two-dimensional product
space. We shall just call it a joint sample space and give it the.symbol S,.

As in the casc of one random variable, let us define an cvent A by

A={X < x) (4.1-1)
A similar event B can be defined for Y:
B={Y 5y} 4.1-2)

Events 4 and B refer to the sample space S, while events {X < x) and {Y <)
refer to the joint sample space S,.1 Figure 4.1-2 illustrates the correspondences

1 There are some specific conditions that must be satisfied in a complete definition of a random
vector (Davenport, 1970, Chapler 5). They are somewhat advanced for our scope and we shall simply
assume the validity of our random vectors.

Do not forget that elements s of S form the link between the two events since by writing {X < x}

we really refer to the set of those s such that X(s) < x for some real number x. A similar statement
holds for the event {Y <y},

S,
————— 1 (X0), Yis)

Function X

Flgure 4.1-1 Mapping from the sumple space S to the joint sample spuce S, (xy plune),

MULTIPLE RANDOM VARIANLES K9

Y

A={X<x)
V.

Figure 4.1-2 Comparisons of events in § with those in S,

between cvents in the two spaces. Event 4 corresponds to all points in S, for
which the X coordinate values are not greater than x. Similarly, event B corre-
sponds to the Y coordinate values in S, not exceeding y. Of special interest is
to observe that the event 4 n B defined on S corresponds to the joint event
{X < x and Y <y} defined on S,, which we write {X <x, Y < y}. This joint
event is shown crosshatched in Figure 4.1-2.

In the more general casc where N random variables X,, X,, ..., Xy are
defined on a sample space S, we consider them to be components of an N-

dimensional random vector or N-dimensional random variable. The joint sample

space S, is now N-dimensional.

4.2 JOINT DISTRIBUTION AND ITS PROPERTIES

The probabilities of the two cvents A = {X < x} and B={Y S.y,} huyc {llrc:}dy
been defined as functions of x and y, respectively, called probability distribution
functions:

Fylx) = P{X < x) (4.2-1)
Fyly) = P(Y < y} (42-2)

We must introduce a new concept to include the probability of the joint event
{(¥<sx, Y <y

Joint Distribution Function

We define the probability of the joint event {X < x, Y < p}, which is a funcliop
of the numbers x and y, by a joint probability distribution function and denote it
by the symbol Fy y(x, y). Hence,

Fyylx, ) =P{X <x, Y <y} (4.2-3)

R R

[}
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It should be clear that P{X Sx, Y <y} =P(4 n B), where the joint cvent
A A Bis defined on S.

To illustrate joint distribution, we take an example where both random vari-

ables X and Y are discrete.

Example 4.2-1 Assume that the joint sample space S, has only three possible
clements: (1, 1), (2, 1), and (3, 3). The probabilities of these clements are
assumed to be P(1,1)=02, P2, 1)=103, and P{, 3) =05 We find
FX. Y(xv ,V)-

In constructing the joint distribution function, we obscrve that the event
{X £x, Y <y} has no elements for any x < | andfor y < 1. Only at the
point (1, 1) does the function assume a step valuc. So long as x 2 { and
y =1, this probability is maintained so that Fy y(x, y) has a stair step
holding in the region x > L and y 2 1 as shown in Figure 4.2-1a. For larger x
and y, the point (2, 1) produces a second stair step of amplitude 0.3 which
holds in the region x =2 and y 2 L. The sccond step adds do the first.
Finally, a third stair step of amplitude 0.5 is added to the first two when x
and y are in the region x 2 3 and y 2 3. The final function is shown in
Figure 4.2-1a.

The preceding example can be used to identify the form of the joint distribu-
tion function for two general discrete random variables. Let X have N possible
values x, and Y have M possible values y,., then

N M
FX. Y(xl y) = zl Elp(xnt ym)u(x - xll)u(y - ym) (42'4)
where P(x,, y) is the probability of the joint event {X = x,, ¥ = Y} and u(*) is
the unit-step function. As seen in Example 4.2-1, some couples (%ns Ym) may have
zero probability. In some cases N or M, or both, may be infinite.

If Fy ylx, y) is plotted for continuous random variables X and Y, the same
general behavior as shown in Figurc 4.2-la is obtained except the surface
becomes smooth and has no stairstep discontinuitics.

For N random variables X,, n=1,2, ..., N, the generalization of (4.2-3) is
direct. The joint distribution function, denoted by Fy Xau o xalX 10 X210 000 X i8S
defined as the probability of the joint event {X; < X4 X, %3, Xn S xy}:

F.\"..\'z......\’n(xl:xzv-“vXN)= P{X, < xy, Xy € Xgeeees Xu < xy) (4.2-5)

For a single random variable X, we found in Chapter 2 that Fy(x) could be
cxpressed in general as the sum of a function of stairstep form (due to the discrete
portion of a mixed random variable X) and a function that was continuous (due
to the continuous portion of X). Such a simple decomposition of the joint dis-
tribution when N > 1 is not gencrally true [Cramér, 1946, Scction 8.4]. However,
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Fy, vix. ¥)

Figure 4.2-1 A joint distribution function
{a), and its corresponding joint density
function (b), that apply to Examples
(2} 4.2-1 and 4.2-2.

it is true that joint density functions in practice often correspond to all random
variables being either discrete or continuous. Therefore, we shall limit our con-
sideration in this book almost entirely to these two cases when N > L.

Propertics of the Joint Distribution

A joint distribution function for two random variables X and Y has several
properties that follow readily from its definition. We list them:

(1) Fyy(—on—@)=0 Fry(=0,0)=0 Frix —0)=0  (42:60
() Fy. (o0, ) =1 (4.2-6b)
(3) 0sFyy{x,y)s1 (4.2-6¢)
(4) Fxylx, pisa nondecreasing function of both x and y (4.2-64)
(5) Fx.o(x2, y2) + Fx x{xs, y1) = Fx,vx1, y2) = Fx,vlx2, 70

=P{x; <X<x3, h<YS ¥y} 20 (4.2-6¢)
(6) Fx,ylx, 00} = Fx(x) Fy, (0, y) = Fy(y) (4.2-6¢f)

|
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The first five of these propertics are just the two-dimensional extensions of .
the propertics of one random variable given in (2.2-2). Properties 1, 2, and 5 may
be used as tests to determine whether some function can be a valid distribution

function for two random variables X and Y (Papoulis, 1965, p. 169). Property 6 K
deserves a few special comments. :

2y

=3
T

G g oh Sy S

P S AL S

nr

0.5

0.5

Marginal Distribution Functions |

_‘] .

Property 6 above states that the distribution function of one random variable can

be obtained by setting the value of the other variable to infinity in Fy 4(x, y). The

- functions Fy(x) or Fy(y) obtained in this manner are called marginal distribution
Junctions, .

To justify property 6, it is easiest to return to the basic events A and B, de- .

fined by A = {X < x} and B = {Y <y}, and observe that Fy y(x, y) = P{X < x,

Y <y} = P(A n B). Now if we set y to oo, this is equivalent to making B the cer- .

tain event; that is, B = {Y < o0} = S, Furthermore, since A N B=A A S = A, -

then we have Fy (x, )= P4 N S)= P(A) = P{X 5 x} = Fy(x). A similar
proof cun be stated for obtaining F,(y)

AR

LT

Fy(y) .
1.0 BB — :

e

0.5

0.5

1 ! Figure 4.2-2 Marginal distributions applicable
0 | 2 3 ¥ (o Figure 4.2-1 und Example 4.2:2: (a) Fy(x)
) and (b} Fy{y).

.- = —< l E“' | ] )

Example 4.2-2 We find explicit expressions for Fy, y(x, y), and the marginal
distributions Fx(x) and F(y) for the joint sample space of Example 4.2-1,

The joint distribution derives from (4.2-4) if we recognize that only three
probabilities are nonzero:

From an N-dimensional joint distribution function we may oblain a k-
dimensional marginal distribution function, for any selected group of & <_>f the N
random variables, by setling the values of the other N — k random variables to
infinity. Here k can be any integer 1,2,3,...,N — L.

fromimaazia st

Fx.v(x, y) = P(1, Dul(x ~ Du(y - 1)
+ P2, Du(x — uly - 1)
+ P(3, 3u(x — Iu(y — 3)
where P(1, 1) = 0.2, P(2, 1) = 0.3, and P(3,3) =0.5. If we set p = co:

4.3 JOINT DENSITY AND ITS PROPERTIES

In this section the concept of a probability density function is extended to include 3

multiple random variables.
Fy(x) = Fyx, y(x, 00)..

We shall refer often to fy, y(x, y) as the joint (Iensityﬁmclion._ .
If X and Y arc discrete random variables, Fy y(x, y} will possess step f.hsgo'n-
tinuities (see Example 4.2-1 and Figure 4.2-1). Derivatives at these disconltinuities r

»\ = P(l, Du(x — 1) -+ P(2, Du(x = 2) + P(3, 3)u(x — 3) Joint Density Function j
i: =0.20(x — 1) + 0.3u(x — 2) + 0.5u(x — 3) For two random variables X and Y, the joint probability densi'lyf.mwt.ion, dcno.lcd ‘

g Jx.v(x, p), is defined by the second derivative of the joint distribution function n
% If we set x = co: wherever it exists: i
8 -
F3 Fy(y) = Fx, 4(c0, y) O*Fy (x, y) -
;E' S vx, y) = == (4.3-1)

i = 02u(y — 1) + 03u(y ~ 1) + 0.5u(y — 3) : dx dy F
LS A
) = 0.5u(y — 1) + 0.5u(y — 3) o

Plots of these marginal distributions are shown in Figure 4.2-2,
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arc normally undefined. However, by admitting impulse functions (sce Appendix
A), we are able to define [y, y(x, y) at these points. Thercfore, the joint density
function may be found for any two diserete random variables by substitution of

(4.2-4) into (4.3-1):
N M
fert =L T Plxy ya) Ox = X) 8y — Y 4.3-2)
. 1

n=] m=
An cxample of the joint density function of two discrete random variables is

shown in Figure 4.2-1b.

When N random variables X, X2, ooos Xy arc involved, the joint density
function becomes the N-fold partial derivative of the N-dimensional distribution
function:
o~FX1.X1,.... Xn(xlv X3y eeen xN) (4‘3_3)

Dxl axl et axN

fxl.k:..... Xn(xll Xy eres xN) =

By direct integration this result is equivalent to

FX|.X:..... ,\‘N('\.ll Ngseens xN)

B J J‘ f Fen oo xlEas Ean oo S 46y Gy o d (@3-4)

) -

Properties of the Joint Density

Several properties of a joint density function may be listed that derive from its
definition (4.3-1) and the propertics (4.2-6) of the joint distribution function:

(1) frre 20 (4.3-50)

) j j oxln ¥ dy dy =

y x
(3) Fx, ¥lx, y) = I J_ So. vl ¢,) dé, dg,

(4.3-5h)
(4.3-5¢)

@ Fx(x)=r r Fy o(E0 €2 dEs dé, (43-50)

‘ Fy(y) = 'r j"” Sxol§ &2) ¢y dg, (4.3-5¢)

6 Pl<XSxon<Ysn= j f Fr o, ) dxdy (435)

» x4

(6) fx(x)':j Jex, y) dy (4.3-59)

Sey) = J Sx vlx, p) dx (4.3-5h)

Marginal Density Functions

The functions fx(x) and fy(y) of property 6 arc called marginal probability density ,‘zJ l
functions or just marginal density functions. They arc the density functions of the 5z z,§
singlc variables X and Y and are defined as the derivatives of the marginal dis- ' };3

tribution functions:

By substituting (4.3-5d) and (4.3-5¢) into (4.3-6) and (4.3-7), respectively, we are
able to verify the equations of property 6.

joint density function with an example.

|
|
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Properties 1 and 2 may be used as sufficient tests to determine if some function
* can be a valid density function. Both tests must be satisficd (Papoulis, 1965,
p. 169).

“I'he first five of these properlics are readily verificd from carlicr work and the
-reader should go through the neccssary logic as an exercisc. Property 6 intro-
duces a new concept.

d
Sxlx) = :":X) | (4.3-6)

d
5y =222 (837

We shall illustrate the calculation of marginal density functions from a given

Example 4.3-1 We find fx(x) and f,(y) when the joint density function is given'
by {Clarke and Disney, 1970, p. 108):

=-x(y+ 1)

Sx.y(x, y) = u(x)u(y)xe

From (4.3-.‘59) and the above equation:

flx) = j’ u(x)xe~ 0+ dy = u(x)xe™* J‘ e~ dy
i o 0

= u(x)xe”*(1/x) = u(x)e™™

N 1

after using an int\cgral from Appendix C.
From (4.3-5h):

after using another integral from Appendix C.
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For N random variables X |, X,, ..., Xy, the k-dimensional marginal densit); :
Junction is defined as the k-fold partial derivative of the k-dimensional marginal

distribution function. It can also be found from the joint density function by inte-
grating out all variables except the k variables of interest X, X5, ..., X,:

See v (X X2, 000, X5)

=J j Sxu xa e xnX Xay ooy X dXy oy dxyyg oo dxy (4.3-8) . "
-© )

4.4 CONDITIONAL DISTRIBUTION AND DEI;IS!TY
i

In Section 2.6, the conditional distribution function of a random variable X,

given some event B, was defined as

P{X < x n B)

Fx(x|B)= P{X < x| B} = 70

for any event B with nonzero probability. The corresponding conditional density

function was defined through the derivative

dF (x| B)

" fx(x1B) = dx

(4.4-2)

In this section these two functions are extended to include a second random vari-

able through suitable definitions of event B,

Conditional Distribution and Density—Point Conditioning

Often in practical problems we are interested in the distribution function of one
random variable X conditioned by the fact that a second random variable Y has

some specific value y. This is called point conditioning and we can handle such *

problems by defining event B by
B={y—A8y<Y <y+Ay} (4.4-3)

where Ay is a small quantity that we eventually let approach 0. For this event,
(4.4-1) can be wrilten

_ j‘yh\r o fx. v(&1, §2) d,y dE,

Falxly — Ay < Y <y + Ay) = Lzard= (4.4-4) S

B8 1@ d&-

where we have used (4.3-5f) and (2.3-64).
Consider two cases of {(4.4-4). In the first case, assume X and Y are both dis-
crele random variables with values x;, i=1,2,..., Nyand y;, j=1,2, ..., M,
respectively, while the probabilities of these values are denoted P(x;) and P(y)),

(@4-1)

MULTIPLE RANDOM vARIABLES U7

respectively. The probability of the joint occurrence of x; and p, is denoted
P(x;, y;). Thus,

M
S = Y P Sy = ») | (e.4-3)
J=1
N M . (
Seodx )= % T Plxg, y) 8x = x) 8y = y) (4.4-6)
i=1 J=1

Now suppose that the specific value of y of interest is yy. With substitution of

v

(4.4-5) and (4.4-6) into (4.4-4) and allowing Ay — 0, we obtain

& Pl ) _ .
Fax|Y =y) = ‘; —#y.Tk u(x — x,) (4.4-7)
o After differentiation we have
& Plxi y) )
SxlY =)= ‘g,‘ —;‘G;)J— 3x — x) (4.4-8)

Example 4.4-1 To illustrate the usc of (4.4-8) assume a joint dgnsily funcEion
as given in Figure 4.4-la. Here P(x,, y)) = sy Plxg, 1) = Y5, elc. Smc.:c
P(y;) = (Yhs) + (is) = %5, use of (4.4-8) will give fx(x| ¥ = y,) as shown in
Figure 4.4-1b.

The second case of {4.4-4) that is of interest corresponds to X and Y both
continuous random variables, As Ay— 0 the denominator in (4.4-4) becom_cs 0.
However, we can still show that the conditional density fx(x] Y = y) may exist. If
Ay is very small, (4.4-4) can be written as

j{-w Sx, (&1 y) dE, 28y (4.4-9)

Filxly—8y<Ysy+dy= Sr(y28y

and, in the limit as Ay— 0

]“ l
FyxlY =y = - f:\’fyzg' -V).(C (4.4-10)

for every y such that fy(y) # 0. After differentiation of both sides of (4.4-10) with
respect to X1

j:\' Y(x» ,V)
= ) o 2200 Y 4.4-11)
fX(xl Y Y) fy()')
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fx, rla. )

Syt1Y =)

Figure 4.4-1 A joint density function
(a) and a conditional density function
(b) applicable to Example 4.4-1.

When there is no confusion as to meaning, we shall often write (4.4-11) as

- fx. Y(X» .V) .
Sx1y) o (4.4-12)

It can also be shown that

) = Sx ()
Slylx) = ——L———fx(x) (4.4-13)

.

Example 4.4-2 We find fy(y]x) for the density functions defined in Example
43-1, Since

-x(y+1)

Ty, vl p) = ulxuly)xe

and

Sx(x) = ulx)e™™

MULTirce RANDOM VARIASLES 9y

are nonzero only for 0 <y and 0 < x, fy(y|x) is nonzero only for 0 < y and
0<xItis
fe(y1x) = u(xpuy)xe™™

from (4.4-13).

xConditional Distribution and Density—Interval Conditioning

1L is somelimes convenicnt to define event I3 in (4.4-1) and (4.4-2) in terms of a

random variable Y by

B={n.<Y sl (4.4-14)

where y, and y, arc real numbers and we assume P(B) = Plr.<Y Syl # 0.
With this definition it is readily shown that (4.4-1) and (4.4-2) become
Fy vl y) — Fy y(X, ya)

Fy(ys) = Frlya)

¥ ."x—m Se vl y) d¢ dy
=i ' 4415
ve (20 Sarx y)ydx dy ( )

Fylxlya <Y Sy =

and

» Jx. v1% Y) dy
. Y - Ys [} 4.4‘16
Hx1p.<Y S 9) {20 Sx.rlx y) dx dy ( )

These last two expressions hold for X and Y either continuous or discrete
random variables. In the discrete case, the joint density is given by (4.3-2). The
resulting distribution and density will be defined, however, only for y, and y,
such that the denominators of (4.4-15) and (4.4-16) arc nonzero. This requirement
is satisfied so long as the interval y, < y Sy, spans at least one possible value of
Y having a nonzero probability of occurrence.

An example will serve to illustrate the application of (4.4-16) when X and Y

arc continuous random variables.

Example 4.4-3 We use (4.4-16) to find fx(x]Y < ) for the joint density func-
tion of Example 4.3-1. Since we have here defined B={Y < y), then y, =
— oo and y, = y. Furthermore, since [y, y{x, y) is nonzero only for 0 < x and
0 < y, we nced only consider this region of x and y in finding the conditional
density function. The denominator of (4.4-16) can be written as [~ o f¥({) dé.

By using results from Example 4.3-1

¢ o mpde [ _de Y
LJ’“’“‘L(&+1)"[ TN T

- 0

i
|
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IxlxlY Sy)
1.0
yao
0.8
10.0
o6}
1.0
0.1
0.4
y=0
0'2 \
0 1 T
1 1 1 L )
0 0.5 1.0 1.5 2.0 2.5 3.0
X

Figure 4.4-2 Conditional probability density functions applicable to Example 4.4-3.

and zero for y < 0, after using an integral { i
1S oo gral from Appendix C. The numerator

4 y
J‘ fx. Y(x, §) dé J‘ u(x)xe“»\‘(("l) dé
—w o

y
u(x)xe™* j e~ X d¢

(]
= u{x)e " *(1 —e™*’) y>0
and zero for y < 0, after using another integral from Appendix C, Thus

et

This function is plotted in Figurc 4.4-2 for several values of y.

y+1

SlxY <y) = u(x)u(y)(

4.5 STATISTICAL INDEPENDENCE

It will be recalled from (1.5-3} that two cvents A and B ¢ alistically i
dent if (and only if) ’ nd B are stalistically indepen-,

P(A n B) = P(A)P(B) (4.5-1)

MULTIPEE RANDOM Vaiabies 1ol

This condition can be used Lo apply to (wo random variables X and Y by defin-

ing the events A = {X < x} and B ={Y sy} for two real numbers x and y

Thus, X and Y are said to be statistically independent random pariables il (and
only if)
P{X <x, Y <y} =P{X < x}P(Y <) (4.5-2)
From this expression and the definitions of distribution functions, it follows
that
Fy, o(x, y) = Fy(x)Fy(y) . (4.5-3)

it X and Y are independent. From the definitions of density function‘s, (4.5-3)
gives

Je fxy y) = L5 () S) (4.5-4)

by differentiation, il X and Y are independent. Either (4.5-3) or (4.5-4) may serve
as a suflicient definition of, or test for, independence of two random variables.
The form of the conditional distribution function for independent cvents is

* found by use of (4.4-1) with B = {Y < y}:

PX<x Y <y} Fealxy) (4.5-5)

F Y SN=""py 37~ A0

By substituting (4.5-3) into (4.5-5), we have
Fx(x|Y S y) = Fx(x) (4.5-6)

In other words, the conditional distribution ccases to be conditional and simply
equals the marginal distribution for independent random variables. It can also be

shown that
Fyyl X < x) = Fyly) (4.5-7)
Conditional density function forms, for independent X and Y, arc found by
differentiation of (4.5-6) and (4.5-7):
LKxlY < y) = fx(x) (4.5-8)
Sy X < x) =,y (4.5-9)

Example 4.5-1 For the densities of Example 4.3-1:
S ) = u(x)u(y)xe =0+ Y
-X

mmmﬂwmﬁmﬁumn

Therefore the random variables X and Y are not independent,

3

p==m

[,

oL e
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In the more general study of the statistical independence of N random vari-
ables X0 Xaooe, Xyowe define events A; by

/ll={’\,lsxl} i= lo 2'---|N (4.5"0)

where the x, are real numbers. With these definitions, the random variables X,
are said to be statistically independent if (1.5-6) is satislicd.

It can be shown that if Xy, Xayoens Xy arc statistically independent then any
group of these random variables is independent of any other group. Furthermore,
a function of any group is independent of any function of any other group of the
random variabics. For example, with N = 4 random variables: X, is independent
of Xy+ X+ Xy Xy is independent of X, + X, etc. {scc Papoulis, 1965,
p. 238).

4.6 DISTRIBUTION AND DENSITY OF
A SUM OF RANDOM VARIABLES

The problem of finding the distribution and density functions for a sum of sta-
tistically independent random variables is considered in this section.

Sum of Two Random Variables

Let W be a random variable equal to the sum of lwomdom vari-

ables X and Y
W=X+Y (4.6-1)

This is a very practical problem because X might represent random signal

voltage and Y could represent random noise at some instant i time. The sum W

would represent @ signal-plus-noisc voltage available to some receiver.
The probability distribution function we seck is defined by

Fi(w) = P{W S w} = P{X + Y S w) (4.6-2)

Figure 4.6-1 illustrates the region in the xy planc where x +y = W. Now from
(4.3-5/), the probability corresponding to an clemental area dxdy in the xy plane
located at the point (X, ¥) is fy, y(x, y) dx dy. If we sum all such probabilities over
the region where x + y S wWwe will obtain Fy{w). Thus

Fylw) = [w J‘w_’ Sy vlx, y) dx dy (4:6-3)

o) JxB - D

and, after using (4.5-4):

o W-’y
Fyfw) = '[ S J flx) dx dy (4.6-4)

xX= ="
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»

~
®
b3

xty=w

x+y<w

Fipure 4.6-1 Region in xy plane where x +
ysw

xifxx\\\\\

By differentiating (4.6-4), using Leibniz’s rule, we get the desired density function

Sw(w) = J‘_ S0 Sxlw =) dy {4.6-5)

This expression is recognized as a convolution integral. Consequently, we have
shown that the density function of the sum of two statistically independent random
variables is the convolution of their individual density functions.

Example 4.6-1 We use {4.6-5) to find the density of W=X+Y where the
densities of X and Y arc assumed to be

S0 = £ 19 = wtx = )

Si9) = 3 L) =y = B

with 0 < a < b, as shown in Figure 4.6-2a and b, Now because 0 < X and
0 < Y, we only nced examine the case W =X+ Y > 0. From (4.6-5) we
wrile

Jw(w) = j s [u(y) — uly — bY}{u(w — y) — u(w ~ y — @)l dy

l o0
= J. 1 —uly— bYI[u(w — y) — u(w — y — a)) dy

L[ -
=;,;U u(w—y)dy—L uw — y = a) dy

—J‘mu(y — bu(w — y) dy + J
0 o

@

u(y - b)u(w — y — a) (Iy]

~
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Sx(x)
L
a
[4] a x
(@)
fely)
IR
b
0 b y
h)
Sw(w)
L —
[
o b ~
a a+b ¥ Figure 4.6-2 Two densily functions (a)
(c) and (b) and their convolution (c).

All the'sc integrands are unity; the values of the integrals are determined by
the }Jnxt-stcp functions through their control over limits of integration. After
straight{orward evaluation we get

wab Osw<a
1/b as<w<b
Swlw) =
i (@+b—wab bs<w<a+b
0 w2a-+b

which is sketched in Figure 4.6-2c.

*Sum of Several Random Variables

When ll.u: sum Y of N independent random variables X,, X,, ..., Xy is to
be considered, we _may extend the above analysis for two random variables.
Let Y, =X, 4+ X,. Then we know from the preceding work that fy (y,) =
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Jea(x2) # fx (x ).t Next, we know that X, will be independent of ¥y = X, + X,
becuuse X, is independent of both X, and X,. Thus, by applying (4.6-5) to the
two variables X, and Y, to find the density function of Y, = Xy + Y;, we get
Jrraxy+x3+5,(02) = [x,(x3) *frimxi+x:01)
= fx,(X3) * fx,{x3) * S, (xy) (4.6-6)

By continuing the process we find that the density function of Y =X, + X, +
oo+ Xy is the (N_— 1)-fold convolution of the N individual density functions:

S =fx,,(«"~) *fx~-|('\‘N—l) L *fx.(-\'x) - (46-7)

The distribution function of Y is found from the intcgral of fy(y) using
(2.3-6¢).

*477 CENTRAL LIMIT THEOREM

Broadly defined, the central limit_theorem says that the probability distribution
function of the sum of a large number of random variables approaches 4 ussinn
distribution. Although the (heorem is known to apply to some cases of sta-
tistically dependent random variables (Cramér, 1946, p. 219), most applications,
and the largest body of knowledge, are dirccted toward statistically independent
random variables. Thus, in all succeceding discussions we_assume stalistically
independent random variables. -

e

*Unequal Distributions

Let %, and o} be the means and variances, respectively, of N random variables
X, i=1,2,..., N, which may have arbitrary probability densitics, The central
fimit theorem stales that the sum Yy = X, + X; 4+ - + X, which has _mean
V,=X,+ X, + - + Xy and variance oy, = 0%, + 0y, + ' +0x,, has a

probability distribution that asymptotically approaches gaussian _as N — oo,
Necessary conditions for the theorem's validity are difficult to state, but sufficient
conditions are known to be (Cramér, 1946; Thomas, 1969)

0%, > By >0 i=1,2..,N (4.7-1a)
E[X, - X1 <B, i=1,2..,N (4.7-10)

where B, and B, are positive numbers. These conditions guarantee thiat no one
fandom variable in the sum dominates. .

“"The rcader should observe thal the central limit theorem guarantees only
that the distribution of the sum_of random variablcs becomes gaussian, It does
not follow that the probability density is always gaussian. For continuous

t The asterisk denotes convolution.
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random variables there is usually no problem, but certain conditions imposed on
the individual random variables (Cramér, 1946; Papoulis, 1965 and 1984) will
guarantec that the density is gaussian.

For discrete random variables X, the sum Y, will also be discrete so its
density will contain impulscs and is, Therelore, not gaussian, cven though the dis-
tribution approaches gaussian. When the possible discrele values of cach random

vanable are kb, k=0, oL 1, 42, ..., with b a constant,t the envelope of the
impulses in the density of the sum will Be gaussian (with mean ¥, and variance
al,). This casc is discusscd in some detail by Papoulis (1963).

The practical uscfulness of the central limit theorem docs not reside so much
in the cxactness of the gaussian JistAbution for N — co because the variance of
Yy becomes infinite from (4.7-1a). Usclulness derives more {rom the fact that Yy
for finite N may have a distribution that is closely approximated as gaussian. The
approximation can be quile accurate, even Tor relatively small values of N, in the
Central region of the gaussian curve near ThHe mean. However, the approximation
can be very inaccuralc in the tail regions away from the mean, cven for large
values of N (Davenport, 1970; Melsa and Sage, 1973). Of course, the approx-
{mation is made more accurate by increasing N.

*Equal Distributions

1f all of the statistically independent random variables being summed are contin-
Tous and have the same distribution function, and therefore the same density, the
proof of the Central Limit thcorem is relatively straightforward and is next
developed.

Because the sum Yy =X, + X, + o+ Xy has an infinite variance as
N - oo, we shall work with the zero-mean, unit-variance random variable

N " ik
Wy =(Yy— Pov, = L X,)/[‘Zld.]
i=1 =

P .
= T - %) (4.7-2)

—\/—ﬁa‘\.:nl

instead. Here we define X and ol by

X=X alli 4.7-3)
’ o} =0% alli (4.7-4)

since all the X have the same distribution.
The theorem's proof consists of showing that the characteristic function of
1, is that of a zero-meat, unit-variance gaussian random variable, which is

By () = €Xp (—w?/2) (4.7-5)

t These are called lattice-type discrele random variables (Papoulis, 1965).
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- from Problem 3-28. If this is proved the density of Wy must be gaussian from
7 7(3.3-3) and the fact that Fourier transforms are unique. The characteristic func-

tion of Wy is

wW jo y
Oy () = E[e™""] = E[cxp { Y (X - X)}]

Noyi=1

- <1«*{cxp[ Jo_ (x, - ?)]}>~ (4.7-6)
; VTG :

The last step in (4.7-6) follows from the independence and equal distribution of
the X,. Next, the exponential in (4.7-6) is expanded in a Taylor polynomial with
a remainder term Ry/N:

E{exp [ j%ax X, — X)]}

Jao ) ' ( Jo )’ X, = 2 RN}
= E{1 X, - =
{ +(\/I-V-O’x( =R \/ﬁ"x 2 +N
=1 — (@¥2N) + E[Ry)IN @)

v./hcrc E[Ry] approaches zero as N— oo (Davenport, 1970, p. 442). On substitu-
tion of (4.7-7) into (4.7-6) and forming the natural logarithm, we have

In [@y,(@)] = N In {1 = (@?/2N) + E[Ry)/N} (4.7-8)
Since
PLE S
1n(1-—z)=—-[2+—2'+?+"-] lzi <t 4.7-9)

we identify z with (w?/2N) — E[RJ/N and write (4.7-8) as

2 2
In [y ()] = —(w?/2) + E[Ry] — —IZ— [a) - E-[-R—N]-] 4+ (47-10)

2N~ N
s0
:i_x‘r;{ln [Ow, ()]} =In {hlll-l:n d)w"(w)} = -2 (4.7-11)
. Finally, we have
r}im DOy () = e~/ (4.7-12)
which was to be shown. '

We illustrate the use of the central limit theorem through an example.
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Example 4.7-1 Consider the sum of just two independent uniformly distrib-
uted random variables X, and X, having the same density

Ji) =1 [ = ulx = )]

where a > 0 is a constant, The means and variances of X, and X, are X =

af2 and o} = a?/12, respectively. The density of the sum W =X, + X, is .

available from Example 4.6-1 (with b = a):

Sw(w) = 1 tri (.‘1’)
a a

where the .funclion tri (+) is defined in (E-4). The gaussi‘im approximation to
W has variance o}, = 20} = a?/6 and mean W = 2(a/2) = a:

g=(w=a)ijtal)3)

V' (a?/3)

Figure 4.7-1 illustrates f,,(w) and its gaussian approximation. Even for the
case of only two random variables being summed the gaussian upprox-

Approximation to f,,(w) =

imation is a fairly good one. For other densities the approximation may be . - i

very poor (see Problem 4-63).

1O
Gaussiun approximation
3 - twmniad
/" e ~lwu)ia'id)
05k /a/w(w)
] 1
0 [ 4w

Figure 4.7-1 The triungulur density function of Example 4.7-1 and its gaussian approximation,
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PROBLEMS

4-1 Two events 4 and B delined on a sample space § are related (o a joint sam-
ple space through rundom varinbles X and Y and are defined by A = {V < X}
and B = {y, < Y < y,;}. Make a sketch of the two sample spaces showing areas
corresponding to both events and theevent A N B = {(Xsx,pm<Y<smh
42 Work Problem 4-1 for the two cvents A = {v) < X gx,} and B =
{ri <Y <yl .
4-3 Work Problem 4-1 for the two events 4 = {x; < X € x; or x; <V v}
and B={y, <Y <y}, . .
4-4 Three events 4, B, and C satisfy Cc Bc A and are defined by A =
{(X<x,, Y<y} B={X<x, Y<p} and C={X<x,, Y <y} for two
random variables X and Y.
o {a) Sketch the two sample spaces § and S, and show the regions correspond-
ing to the three events. ’

(b) What region corresponds to theevent A n B~ C?

4-5 A joint sample space for two random variables X and Y has four elements
(1, 1, 2, 2), 3, 3), and (4, 4). Probabilitics of these elements are 0.1, 0.35, 0.05,
and 0.5 respectively. -

(«) Determine through logic and sketch the distribution function Fy (x, y).

(b) Find the probability of the event {X < 2.5, Y < 6}.

{¢) Find the probability of the event {X < 3}.

.4-6 Write a mathematical cquation for FFy ((x, y) of Problem 4-5.
-4-7 The joint distribution function for two random variables X and Y is

Fy y(x, y) = u(xu(y)[1 — e~ — &7 4 "]

where u(+) is the unit-step function and a > 0. Sketch Fy y(x, y).
4-8 By use of the joint distribution function in Problem 4-7, and assuming
a = 0.5 in each case, find the probabilities:

(@) P{X s 1,Y 52} (0 P{0.5S < X < 1.5}

(¢) P{—-15<X <2 1<Y <3}
4-9 Find and sketch the marginal distribution functions for the joint distribution
function of Problem 4-5,
4-10 Find and sketch the marginal distribution functions for the joint distribu-
tion function of Problem 4-7.
4-11 Given the function

Gy ylx, 3) = a1l — e 7]

“Show that this function satisfics the first four propertics of (4.2-6) bat fuils the
filth one. The function is therefore not a valid joint probability distribution
function.
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4-12 Random variables X and Y arc components of a two-dimensional random
veetor and have ajoint distribution

0 x<0 or yp<0

xy 0<x<| and O<sy<|
X 0<x<t and 1<y

y 1 €x and O<y<t

1 1<x and 1<y

(«) Sketch Fy vlx, .
(h) Find and sketch the marginal distribution functions Flx)and Fy(y).

4-13 Show that the function
0 x <y
G,\‘,y(-"‘))—' {l Xy
cannot be a valid joint distribution function. [Hint: Use (4.2-6¢).]

4-14 A fair coin is tossed twice. Define random variables by: X = “number of
heads on the first toss” and Y =" number of heads on the sccond toss” (note

that X and Y can have only the values 0 or 1).
(a) Find and sketch the joint density function of X and Y.

(b) Find and sketch the joint distribution function.
4-15 A joint probability density function is

1/ab 0<x<a and
Jx A3} = {0 elsewhere

Find and sketch Fy, (X, Y-
4-16 1fa < b in Problem 4-15, find:

() PIX+Y S Ja/4) {hy P{Y < 2bX/a).
4-17 Find the joint distribution function applicable to Example 4.3-1.
4-18 Sketch the joint density function fx, v(x, y) applicable to Problem 4-5. Write
an equation for fx, y(¥, ¥). ‘

4-19 Determine the joint density an
Problcm:i-7.

O<y<b

d both marginal density functions for

4-20 Find and sketch the joint density function for the distribution function in

Problem 4-12,
4-21 (a) Find a censtant b (in terms of a) so that the function
pe=t*t"  0<x<a and O<y<®

Sxolx )= {0 clsewhere

is a valid joint density function.
(h) Find an expression for the joint distribution function.

b gt TSI TN

L & et N

g

L T

MULTIPLE RANDOM VARIABLES 111

4-22 (a) By use of the joint density function of Problem 4-21, find the marginal
density functions.

(h) Whatis P{0.5a < X < 0.754) in terms of a and b7
4-23 Delermine a constant b such that cach of the following are valid joint
densily funclions:

3xy O<x<l d
(@) fx 6 ) = y x an 0<y<b
0 elsewhere
() fxr( ) = bx(1 —y) 0<x<05 and 0<y<!
0 clsewhere
b(x* +4y) 0D :
(C)fx,y(x.y)={(x 9 <lixl<! and 0gy<?
0 clsewhere

*4.24 Given the function

x*+yl<b
elsewhere

2 2
Sxrx y) = {((;‘ + y*")/8n

(a) F!nd a constant b so that this is a valid joint density function.
(h) Find P{0.5b < X* + Y? < 0.8b}. (Hint: Use polar coordinates in both

pirts.)
*4.25 On a firing range the coordinates of bullet strikes relative to the target
bull's-cye arc random variables X and Y having a joint density given by

~(x? +y2)/2¢1

Sx (X, y) =

2na?

Here o! is a constant related to the accuracy of manufacturing a gun's barrel.
What value of g2 will allow 80% of all bullets to fall inside a circle of diameter
6 cm ! (Hint: Use polar coordinates.)

4-26 Given the function

b(x + y)? _2<x<2 and ~3<y<3

S r(x y) = {0 elsewhere

{a) Find the constant b such that this is a valid joint density function.
(b) Determine the marginal density functions fx(x) and fy(y)

4-27 Find the conditional density functions Sx(x1y), Sx(x[ya) Sylylx,) and
fy(y| x,) for the joint density defined in Example 4.4-1,

4-28 Find the conditional density function fx(x| ) applicable tu Example 4.4-2.

4-29 By using the results of Example 4.4-2, calculate the probability of the event
{y<21X = 1}

i

iﬁ.e;,i
o0
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4-30 Random variables X and Y are joimly gaussian and normalized if

x¥ — 2pxy + y?
A=) where -l1gpsi

(a) Show that the marginal density functions are

1
Jx A%, y) = ——==—=exp ["
2n /1 = p?

1
o) = = oxp (X)) == 0 (<)

(Hint: Complete the square and use the fa r
Hin ct that the area i
domty s i) : under a gaussian

(b) Are X and Y statistically independent?
4-31 By use of the joint density of Problem 4-30, show that

L] ¥ = ) = e exp | = X2
WY =9 =" =5 ""[ 201 - p?)

4-32 Given the joint distribution function

Fyyx, y) = u(x)u(y)[l — e™™ — e~ 4 e7*7]
find:

(a) The conditional density functions fy(x| Y = y)and fy(y| X = x).
(b) Are the random variables X and Y statistically independent?

4-33 For two independent random variables X and Y show that

P{st}=J

Fy(x)/x(x) dx
or

Fx(0) Sx(y) dy

4-34 Two random variables X and Y have a joint probability density function

.

P{st}=1-'[

-w

= x2y
Jx (%, ) = 16
0 elsewhere

O<y<x<2

(¢) Find the marginal density functions of X and Y.
(b) Are X and Y stalistically indépendent?

1‘:1-35 Show, by use of (4.4-13), that the area under f,(y] x) is unity.
4-36 Two random variables R and © have the joint density function
u(r)fu0) — (0 = 20)3r _ 4y

: ¢

Juofr, 0) = 5

(@) Find PO<R < 1,0 <O < n/2}.

Bttt N A TR R |
PSR N CR i N

»t

(b) Find fx(r|© = m). ‘
(c) Find fx(r|® < 7) and compare to the result found in part (b), and explain

the comparison.
4-37 Random variables X and Y have respective density functions

Jxlx) = -1[; [u(x) — ulx — a))

July) = buly)e™

where a > 0 and b > 0. Find and sketch the density function of W = X + YifX
and Y are statistically independent. -
4-38 Random variables X and Y have respective density functions

Sylx) = 0.13(x — 1) + 0.26(x — 2) + 0.48(x — 3) + 0.35(x — 4)

Jily) = 048(y — 5) -+ 0.58(y — 6) + 0.18(y = 7)
Find and sketch the density function of W = X + Yif X and Y are independent.
4-39 Find and sketch the density function of W = X + Y, where the random
variable X is that of Problem 4-37 with « = s and Y is that of Problem 4-38.
Assume X and Y are independent.
4-40 Find the density function of W = X + Y, where the random variable X is
that of Problem 4-38 and Y is that of Problem 4-37. Assume X and Y are inde-
pendent. Sketch the density function for b = 1 and b =4
*4-41 Three statistically independent random variables X,, X5, and X all have
the same density function ’

1
Julx) = p (ux) = ulxy = )] i=123

Find und sketch the density function of ¥ = X, + X + X,ila> 0is constant.

ADDITIONAL PROBLEMS

4-42 In a gambling game two fair dice arc tossed and the sum-of the numbers
that show up determines who wins among two players. Random variables X and
Y represent the winnings of the first and second numbered players, respectively.
The first wins $3 if the sum is 4, 5, or 6, und loses $2 if the sum is 11 or 12; he
neither wins nor loses for all other sums. The second player wins $2 for i sum of
8 or more, loses $3 for a sum of 5 or less, and neither wins nor loses for other
sums,

(¢) Draw sample spaces § and S, and show how clements of § map to cle-
ments of S5

(b) Find the probabilitics of all joint outcomes possible in §,.
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4-43 Discrete random variables X and Y have a joint distribution function
Fy y(x, y) = 0.10u(x + Auly — 1) + 0.13u{x + My + 5)
+ 0.17u(x + Duly — 3) + 0.05u(x)u(y — 1)
+ 0.18u(x — )u(y -+ 2) + 0.23u(x — Nu(y — 4)
+ 0.12u(x — Auly + )
Find: (¢) the marginal xlis':lribtxlioxls Fy(x) and Fy(y) and sketeh the two functions,
() X and ¥, and (c) the probability P{—1 < X <4, ~3<Y <3
4-44 Random variables X and Y have the joint distribution
%(i(—_‘_—-\‘e———_;%‘—”i—e"’)u(y) 0<x<4

Fy ylx, 3) =40 x<0ory<0

1+ -;- e
Find: {a) The marginal distribution functions of X and Y, and (b) the probability
P3<Xs51 <Y <2}

4-45 Find the joint distribution function of the random variables having the joint
density of Problem 4-48.

4-46 Find a value of the constant b so that the function

—%e"" 4d<xandany yz0

e y(x, y) = bxy? exp (= 2xyju(x — Duly — )

is a valid joint probability density.
4-47 The locations of hits of darts thrown at a round dartboard of radius r are
determined by a vector random variable with components X and Y. The joint

density of X and Y is uniform, that is,
)= 1/nr? x4yt <r?
Sexy) = 0 clsewhere

Find the densitics of X and Y.
4-48 Two random variables X and Y have a joint density

C S ) = lulx) - ulx - Auy)y® exp [—(x + 1y’

Find the marginal densitics and distributions of X and Y.
4-49 Find the marginal densities of X and Y using the joint density

Serla Y= 2u(x)u(y) exp [..(4}, + %)]

Y have the joint density of Problem 4-49. Find

4-50 Random variables X and
an twice the valucs of X for

the probability that the values of Y arc not greater th
x<ld

WA BT
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4-51 Find the conditional densities fx(x]Y = y) and fy{y| X = X) applicable to
thé joint density of Problem 4-47.

4-52 For the joint density of Problem 4-48 determine the conditional densitics
Sx(x| ¥ = yyand f(y| X = x).

4-53 The time it takes a person to drive to work is a random variable Y. Because
of traflic driving time depends on the (random) time of departure, denoted X,
which occurs in an interval of duration To that begins at 7:30 A.M. each day.
There is a minimum driving time T, required, regardless of the time of departure.
The joint density of X and Y is known to be

Sxyl% 9) = ey = Ti*uly = Ty)u(x) — ulx — To)] exp [—(y = Tilx + 1)]

where
c=(1+ ToP2l0 + T’ — 1]

(a) Find the average driving time that results when it is given that departure
occurs at 7:30 A.M. Evaluate your result for To=1h.

(b) Repeat part {a) given that departure time is at 7:30 A.M. plus Ty,

(¢) What is the average time of departure if Ty = 1 h? (Hint: Note that point
conditioning applies.)

*4-54 Start with the expressions

Y
Fyly|B) = P{Y < y|B) =£{__§ay9)f‘_"}
dF(y| B
fy(le)=——';—yyl—l

which are analogous to (4.4-1) and (4.4-2), and derive Fy(ylx, < X < x,) and
fiylx, < X S x) which are analogous to (4.4-15) and (4.4-16).

*4.55 Extend the procedures of the text that lcad to (4.4-16) to show that the joint
distribution and density of random variables X and Y, conditional on the event

B={y, < Y < y,}. are
0 YSVa

Fy, X y) — Fx,y(-". Ya)

1 Fy(e ylyi< Y Sy =47 Fy) = P ya<yEn,
S Fy y(X, )~ Fy, y(X o)

1 (Fy(ﬁf.) = F:(;f) = on<y

: ¥ and

4 0 ysSy. and  y>n
: e vx y1ya < Y<yn= Sy % ) <Y EW

Fyly) — Friva)
4-56 Determine if random variables X and Y of Problem 4-53 are statistically
independent.
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4-57 Determine if X and Y of Problem 4-49 are statistically independent.
4-58 The joint density of four random variables X, i=1,23,and 4, is

4
fx,.x;.x,, x(X1 X2, X3, Xy) = H exp (~2]x])
© my

Find densities (@) Sy, x, ;%1 X2, X31%8)  (B) Sy, xs(%1s X21X3, x4),  and
(€) Sx,(xy [ %2, X3, x4}

4-59 If the difference W = X — ¥ 1s tormed instead of the sum in (4.6-1), develop -

the probability density of W. Compare the result with (4.6-5). Is the density still a
convolution of the densities of X and Y ? Discuss.

4-60 Statistically independent random variables X and Y have respeclive
densities

Sx(x) = [u(x + 12) = u(x — 12)J[1 — |x/12]]/12

Jr(y) = (1/4)u(y) exp (- y/4)
Find the probabilities of the events:

(@ {Y <8 —(2]X|/3)},and () {Y < 8 +2] X|/3)}.
Compare the two results,

4-61 Statistically independent random variables X and Y have respective
densities
Jx(x) = Su(x) exp (—5x)
Sely) = 2u(y) exp (~2y)
Find the density of the sum W = X + Y,
*4-62 N statistically independent random variables X, i=12, ..., N, all have
the same density
Sxlx) = aulx;) exp (—ax)

where a > 0 is a constant. Find an expression for the density of the sum W =
X, +X;4 -+ Xyforany N,

*4-63 Find the exact probability density for the sum of two statistically indepen-
dent random variables each having the density

Jxx) = 3[ulx + a) = u(x — a))x?/2a*

where @ >0 is a constunt. Plot the density along with the gaussian approx-

imation (to the densily of the sum) that has variance 20} and mean 2X. Is the
approximation a good onc? '

*4-64 Work Problem 4-63 cxcept assume
Jx(x) = (1/2) cos (x) rect (x/n).

CHAPTER

FIVE

OPERATIONS ON
MULTIPLE RANDOM VARIABLES

5.0 INTRODUCTION

After establishing some of the basic theory of several randpm variab}cs in the pre-
vious chapter, it is appropriate to now extend the opcrat‘lons d.cscrxbcd in Chap-
ter 3 to include multiple random variables. This chapter is d.cdlcaled to these cx-
tensions. Mainly, the concept of expectation is enlarged to mcludt_: l'wo or more
random variables. Other operations involving moments, c}mraclcnsue functions,
and transformations are all special applications of expectation.

5.1 EXPECTED VALUE OF A
FUNCTION OF RANDOM VARIABLES

When more than a single random variable is involved, expectation must be taken
with respect to all the variables involved. For example, if g(X, Y? is some func-
tion of two random variables X and Y the expected value of g(+,*) is given by

w -
g=E[g(X, V)] = J I 9(x, Y)fx, ¢(x, y) dx dy (5.1-1)
~® J-wo
This expression is the two-variable extension of (3.1-6).
17
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For N random variables Xy, X3, ..., X and some function of these vari-
ables, denoted g(X 4, ..., Xa) the expected value of the function becomes

§ = E[g(Xy .. Xa)l

=J o [ e 0l D

oty -t

Thus, cxpectation in general involves an N-fold integration when N random viri-
ables are involved.

We illustrate the application of (5.1-2) with an example that will develop an
important point.

Example 5.1-1 We shz’xll find the mecan (expected) value of a sum of N
weighted random variables, Il we let

N
YX oo Xp) = ‘Zl“lxl

where the * weights® are the constants o, the mean value of the weighted

sum becomes
N
El Z o X,
(a1

N L w
z j ”'J. al'xlf.\’l.....,\'n(xl‘""XN) (1X| ”'{IXN

E[_(I(XU [ERX} XN)]

- -

from (5.1-2). After using (4.3-8), the terms in the sum all reduce to the form

J a; X felx) dx = E[a,X) = o E[X|]

SO
N N
1;[ 5 a,x,] - 3 LX)
I=] o iml

which says that the mean value of a weighted sum of random variables equals
the weighted sum of mean values.

The above extensions (5.1-1) and (5.1-2) of expectation do not invalidate any
of our single random variable results. For example, let

g(xl:"'»xN)=g(xl) (5.1-3)
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and substitute into (5.1-2). After integrating with respect to all random variables
except Xy, (5.1-2) becomes

o

g=E[g(X )] = J glx ) fx,(x1) dx, (5.1-4)

which is the same as previously given in (3.1-6) for onc random variable. Some
reficction on the reader's part will verify that (5.1-4) also validates such earlicr

lopics as moments, central moments, characteristic function, etc, for a single

random variable.

Joint Moments About the Origin

Onc important application of (5.1-1) is in defining joint moments about the origin.
They are denoted by m,, and are defined by

My = ELX"Y*] = r r XYy 1%, y) dx dy (5.1-5)

for the case of two random variables X and Y. Clearly m,o = E{X"] are the
moments m, of X, while mg, = E[Y*] are the moments of Y. The sum n + k is
called the order of the moments, Thus gz, Mags and m,, are all second-order
moments of X and Y. The first-order moments moy = E[Y]=? and mo =
E[X] = X are the expected values of Y and X, respectively, and are the coordi-
nates of the “center of gravity ” of the function fx, v(x, ¥).

The sccond-order moment m,, = E[X Y] is called the correlation of X and
Y. It is so important to later work that we give it the symbol Ryy. Hence,

Ryy = myy = E[XY] = f J ‘ xyfx. v(x, y) dx dy (5.1-6)

If correlation can be wrilten in the form
Ryy = E[XJE[Y] (5.1-7)
then X and Y are said to be uncorrelated. Statistical independence of X and Y is
sufficient to guarantee they are uncorrelated, as is readily proven by (5.1-6) using
(4.5-4). The converse of this statement, that is, that X and Y are independent irx

and Y are uncorrelated, is not necessarily true in general.t
If

Ryy=0 (5.1-8)
for two random variables X and Y, they are called orthogonal.

A simple example is next developed that illustrates the important new topic
of correlation.

t Uncorrelated gausstan random variables are, however, known to also be independent (see
Section 5.3).

~
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120 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIONAL PRINCIPLES

Example 5.1-2 Let X be a random variable that has a mean value X =
E[X] =3 and variance o} = 2. From (3.2-6) we easily determine the second
moment of X about the origin: E[X?] = m,o = 02 + X2 =11,

Next, let another random variable Y be defined by

Y= —6X+22

The mean value of Y is P= E(Y] = E[—6X +22] = —6X + 22 =4. The
correlation of X and Y is found from (5.1-6)

Ryy=my, = E[XY]) = E[—-6X? + 22X] = —6E[X?] + 22X
= ~6(11)+22(3) =0

Since Ryy =0, X and Y are orthogonal from (5.1-8). On the other hand,
Ryxy # E[X]E[Y] = 12,50 X and Y are not uncorrelated [see (5.1-7)].

We note that two random variables can be orthogonal even though cor-
related when one, Y, is related to the other, X, by the linear function
Y =aX + b. It can be shown that X and Y are always correlated if ja] % 0,
regardless of the value of b (see Problem 5-9). They are uncorrelated if a = 0,
but this is not a case of much practical interest. Orthogonality can likewise
be shown to occur when a and b are related by b = —aE[X?]/E[X] when-
ever E[X] # 0. If E[X] = 0, X and Y cannot be orthogonal for any valuc of
aexcept a = 0, a noninteresting problem. The reader may wish to verify these

statements as an exercise. .

For N random variables X;, X,,..., X, the (ny + ny + -+ + ny)-order
momients are defined by

Myipyony = E[XT' X3 -0 X3N]

=J. J XU X e xaX1s ooy Xp) dixy oo dxy (5.1-9)

- -

where ny, ny, ..., nyareallintegers = 0, 1, 2,....

Joint Central Moments

Another important application of (5.1-1) is in defining joint central moments. For
two random variables X and Y, these moments, denoted by g, , are given by

= E[(X = XY(Y = 7))
= J J (x - X)"()’ - ?)kfx (%, y) dx dy {5.1-10)

-
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The sccond-order central moments
fzo = E[(X — X)*] = o} (5.1-11)
oy = E[(Y — V)!] = o} (5.1-12)

are just the variances of X and Y.
The sccond-order joint moment g, is very important. It is called the covari-
ance of X and Y and is given the symbol Cy,. Hence

Cyy =gy, = E[(X — X)(Y - ?)]
= Jw J ) (x = XNy = V) fx, vlx, y) dx dy (5.1-13)

By direct expansion of the product (x — X)Xy — 9), this integral reduces 1o the
form

Cyy = Ryy — X P= Ry, — E[X]E[Y)] ¥ (5.1-14)

when (5.1-6) is used. If X and Y are cither independent or uncorrclated, then
{5.1-7) applics and (5.1-14) shows their covariance is zero:

Cxy=0 X and Y independent or uncorrclated (5.1-15)
If X and Y are orthogonal random variables, then
Cyy = —E[X]E[LY] X and Y orthogonal {(5.1-16)

from use of (5.1-8) with (5.1-14). Clearly, Cyy = 0 if cither X or Y also has zero
mein value, :
The normalized second-order moment

P =gl noiter = Cxrloyay (5.1-170)
given by

p= hi}é——-u (—1'—?)-! (5.1-17h)
Ox Oy

is known as the correlation coefficient of X and Y. It can be shown (scc Problem
5-10) that

~-1gpgt . (5.1-18)

For N random variables X, X,, ..., Xy the (n, + ny + -+ + ny)-order joint
central moment is defined by

L= B, = X)X, = R e (Xy = B ™)

w (‘m =
[T g

(in = K™ w1 o X)Xy e dxy (5.1-19)

An example is next developed that involves the use of covariances.
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Example 5.1-3 Again let X be a weighted sum of N random variables X
that is, let
N
X = Za‘ X,
im i
where the o, are real yvcighting constants. The variance of X will be found.
From Example 5.1-1,

N N
E[X]) = 'Zlal E(X])= lzla‘;\;l =X

so we have

N
X - %= YafX;—K)
I=1

and

N N
o = E{X - R)] = E[Za((x, _R) Y X, - x,)]
=1 =t
N N _ N N
=Y YaoElX,— ax, - X)1= '2 ,Z a0, Cx.x,

Im1 J=1 -1 =1
Thus, the variance of a weighted sum of N random variables X, (weights o)
equals the weighted sum of all their covariances Cy,x, (weights a; o). For the
special case of uncorrelated random variables, where

0 oy
CX(X;={ 2

ax‘ i"—'j
is truc, we get
. N
2 2.2
ox = Z“l ox
(=1

In words: the variance of a weighted sum of uncorrelated random variables
(weights «)) equals the weighted sum of the variances of the random variables

(weights of).

.

*52 JOINT CHARACTERISTIC FUNCTIONS

The joint characteristic function of two random variables X and Y is defined by

Oy lwy, w,)=E

al numbers. An cquivalent form is

[eforx +1o17] (5.2-1)

where o, and w, are rc

Oy ylw,, wa) = J j. fx.rlx e x e dx dy (5.2-2)

- it
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This expression is recognized as the two-dimensional Fouricr transform (with
signs of @, and w, reversed) of the joint density junction. From the inverse
Fouricr transform we also have

l o« ]
S Ax )= o J j Oy y(w,, wy)e oIV do, dw, {5.2-3)

- - a0

By setting either w; =0 or w, = 0 in (5.2-2), the characteristic functions of X
or Y arc obtained. They arc called marginal characteristic functions:

Gylw,) = Oy, y(wy, 0) {5.2-4)
Oy(w,) = Dy, ¥(O, w,) (5.2-5)

Joint moments m,, can be found from the joint characteristic function as
follows:

a"“‘bx,' Hwy, wz)-

n X
dw) dw;

(5.2-6)

my = (="
wy =0, 0320

This expression is the two-dimensional extension of (3.3-4).

Example 5.2-1 Two random variables X and Y have the joint characteristic
function

Oy y(wy, wy) = €xp (—2w} — 80)%)
We show that X and Y are both zero-mean random variables and that they

are uncorrelated.
The means derive from (5.2-6):

X =E[X]=my= —jw—’l

a(")l wy ™0, wa=0
= —j(—4w,) cxp(—2w{—8m§)‘ =0
f wim0, w3=0
P = E[Y] = mo = —j(—16w)) exp(—2w}—8w§)\ =0
o w1 =0, 01=0

Also from (5.2-6):

Ryy = E[XY]=my, = (=) [exp (—2wi — 8w§)]‘

dw, 0w,

w1 =0, w3=0

=0

w1 =0,w1=0

= —(—4w,)(— 16w,) exp ("'2“’} "_,84’2)

Since means are zcro, Cyy = Ryy from (5.1-14). Thercfore, Cxy = 0 and X
and Y are uncorrclated.

-~
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The joint characteristic function for N random variables X, X,, ..., Ny s

defined by
Dy, 201, .., wy) = E[elorX 14+ Junkn) (5.2-7)
Joint moments are obltnined from
I .
(o 0 @y, e wh) 5.8
m;nn oo ny ( .]) (7(0';' Bw? . 5(0;:," Wm0 ( . )
where
R=ni4+n+ +ny (5.2-9

5.3 JOINTLY GAUSSIAN RANDOM VARIABLES

Gaussian random variables are very important because they show up in ncarly
every area of science and engineering. In this section, the case of (wo gaussian

random variables is first examined. The more advanced case of N random vari-
ables is then introduced.

Two Random Variables

Two random variables X and Y are said to_be jointly gaussian if their joint
density function is of the form o

Jxor(x, y) = 3
Moxdy /1 —p

k /,\',Y (v, )

. 2t - p?) Ox Ox0y
i which is sometimes called the bivariate gaussian density. Here
X = E[X] (5.3-2)
Y = E[Y] (5.3-3)
ok = E[(X - %)} (5.3-4)
af = E[(Y - 7)) (5.3-5)
p=E[X — XXY - 7))/oy0, (5.3-6)

obtained from

!

2n0x 0y /1 ~ p?

Seodl 9) S fx oK, ) =

Figure 5.3-1a illustrates the appearance of the joint gaussian density function
(5.3-1). Its maximum is located at the point (X, 7). The maximum valus is

(5.3-7)
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()

5
/
/
) /4 T
z ; Figure 5.3-1 Skeich of the joint
° X ‘ density function of two gaussiun
) random variables.

The locus of constant values of fy y(x, y) will be an cllipscT as shown in Fl'ggrc
5.3-1b. This is equivalent to saying that the line of intcrscgtnon foncd by slicing
the function fy y(x, y) with a plane paralle! to the xy plane is an ellipse,

Observe that if p = 0, corresponding (o uncorrelated X and Y, (5.3-1) can be
written as

Jx. %, ¥) = [ £y () (5.3-8)
where fy(x) and fy{y) are the marginal density functions of X and Y given by
Silx) = \/211!—"}( exp [— (t—;‘?:] (5.3-9)
Sily) = \/il%—; exp [— v 2—0;)1] (5.3-10)
T When ay = oy and p =2 0 the cllipse degenerates into o circle; when p= 1 or =1 the cllipses

degenerale into axes rotated by angles n/4 and —n/4 respectively that pass through the point (£, ¥).
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Now the form of (5.3-8) is sufficient to guarantee that X and Y are statistically
independent. Thercfore we conclude that any two uncorrelated gaussian random
variables are also statistically independent. 1t results that a coordinate rotation
(lincar transformation of X and Y) through an angle

0=ltan" -2—?1“'-1%
. 2 gy — Oy

is sufficient to convert corrclated random variables X and Y, having variances o
and o, respectively, correlation cocflicient p, and the joint density of (5.3-1), into
two statistically independent gaussian random variables.t

By dircct application of (4.4-12) and (4.4-13), the conditional density func-
tions fy(x| Y = y) and fi{(y| X = x) can be found from the above expressions (scc
Problem 5-29).

(5.3-11)

Example 5.3-1 We show by cxample that (5.3-11) applics to arbitrary as well
as gaussian random variables. Consider random variables ¥, and Y, related
to arbitrary random variables X and Y by the coordinate rotation

Y, = X cos () + Y sin ()
Y, = =X sin () + Y cos (0)

It ¥ and ¥ are the means of X and Y, respectively, {he mecans of ¥, and Y,

arc clearly ¥, = X cos (0) + Vsin (0) and ¥, = — X sin (0) + Ycos (0),

respectively, The covariance of Y, and Y, is

Cyivy = E[(Y, - }—,1)(Yz - ?z)]

= E[{(X — X) cos () + (Y — 1) sin (0}

A=(X = X)sin () + (Y = 1) cos (M}]

= (o} — o2} sin (0) cos (0) + Cxy[cos® (0) — sin? (0]
. = (02 — a})('h) sin (20) + Cxy cos (20)
Here Cyy = E[(X — XXY — N1 = poyor. I we require Y, and Y; to be
uncorrelated, we must have Cy,y, = 0. By equating the above equation to
zero we obtain (5.3-11). Thus, (5.3-11) applies to arbilrary as well as gaussian

random variables,

{1 Wozeneraft and Jacobs (1965), p. 155,

-
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*N Raudom Variables

N random variables X, X, ..., Xy are called jointly gaussian if their joint
density function can be written ast

G2 {_ CEREMLE Xl}

Sxus o xXps o XN) = 20"
{5.3-12)
where we define matrices
x; — X, -
Ix—R1=|" %s (5.3-13)
xy — Xy
and
Cihh Cup Cin
(€4l = C:,, C:“ C:,N v(5.3-14)

Cvi Cna ** Can
We usc the notation [-] for the matrix transpose, [-]7! for the matrix inverse,
and |[-1] for the determinant. Elements of [Cy), called the covariance matrix of
the N random variables, are given by

2 A
Ox, r=j

L (5.3-15)
CX(X/ t 9&.’

Cu'—' E[(XI_XI)(XJ_ XJ)J ={

The density (5.3-12) is often called the N-variate gaussian density function.
For the special case where N = 2, the covariance matrix bccomes

o} poy ax]
C =[ % b 5.3-16
l XI an|”X) ‘7}\': ( )
$0 .

' 1 1o},  —ploxox
C “=———[ . P (5.3-17)

™ =055 L —prorior, ok
HCxA™t ] = 1/o},0%,(1 — o) (5.3-18)

On substitution of (5.3-17) and (£.3-18) into (5.3-12), and letting X, = X and
X, = Y, itis easy to verify that the bivariate density of (5.3-1) resulls.

t We denote a matrix symbolically by use of heavy brackets [*}.

AR

YLramms
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-l

. *Some Propertics of Gaussian Random Variables

We state-without proof some of the properties exhibited by N jointly gaussian
“random variables X ,,..., X,.

I. Gaussian random variables are completely defined through only their first-
and second-order moments; that is, by their means, variances, and covari-
ances. This fact is readily apparent since only these quantitics are needed to
completely determine (5.3-12).

2. If the random variables are uncorrelated, they are also statistically indepen-
dent, This property was given earlier for two variables.

3. Random variables produced by a linear transformation of X,, ..., X will also
be gaussian, as proven in Section 5.5.

4. Any k-dimensional (k-variate) marginal density function obtained from the N-
dimensional density function (5.3-12) by integrating out N — k random vari-
ables will be gaussian. If the variables are ordered so that X, ..., X, occur in
the marginal density and X, ,,, ..., Xy are integrated out, then the covariance
matrix of Xy, ..., X, is equal to the leading k x k submatrix of the covariance

. matrix of X'y, ..., Xy (Wilks, 1962, p. 168).

5. The conditional densily fy, (X, ..., Xl Xauy = Xs4qs ooor Xy = xp) is.
gaussian (Papoulis, 1965, p. 257). This holds for any k < N.

*5.4 TRANSFORMATIONS OF
MULTIPLE RANDOM VARIABLES

The function g in either (5.1-1) or (5.1-2) can be considered a transformation
involving more than onc random variable. By defining a new variable Y =
9(X 1, X2, ..., Xy), we see that (5.1-2) is the expected value of Y. In calculating
expected values it was not necessary to determine the density function of the new
random variable Y. It may be, however, that the density function of Y is required
in some practical problems, and its determination is briefly considered in this
section, '

In fact, one may be more generally interested in finding the joint density
function for a set of new random variables

),‘='I;(X|p Xz,..., ,\'N) [=l’2,'._’N (5.4_‘)

defined by functional transformations T;. Now all the possible cases described in
Chapter 3 for one random variable carry over to the N-dimensional problem,
That is, the X, can be continuous, discrete, or mixed, while the functions T, can
be linear, nonlinear, continuous, segmented, etc. Because so many cases arc
possible, many of them being beyond our scope, we shall discuss only one repre-
sentative problem,

We shall assume that the new random variables Y], given by (5.4-1), are pro-
duced by single-valued continuous functions T, having continuous partial deriv-

|

BT g G
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atives everywhere. 1t is further ussumed that a set of inverse continuous functions

i as si -valued contin-
T; ' exists such that the old variables may be expressed as single-valv Min
Tous Tunctions of the new variables:

X, = TP (Y Yoo Y j= L2000 N (5.4-2)

These assumptions mean that a point in the joint sample space of the X; maps

int ointin the space of the new variables Y.

lmolc,):tﬂ,lgngcpa closed rcgi%n of points in the space of the X, and Ry be llll'cb":lt')(r.
responding region of mapped points in the space of thc‘ Y}, then the pro r;'l“l‘l.y
that a point falls in Ry will equal the probapl'llty that.ns mapped pointfalls in
R, . These probabilitics, in terms of joint densities, are given by

J"‘ J‘th._"xﬂ(x,, veey XN) dxl v (IxN

Rx
= j"" an..... YN(Ylv LEXR) yN) dyl (1)'~ (54'3)

Ry

This equation may be solved for fh'(“" yq(yl;l. ..., yy) by treating it as simply a

iple integral involving a change of vanablcs. o
mu“[llr))/lcwlgrkti’ng on the lc?t side of (5.4-3) we change the 'vuriubles Xi to f\cw (\;‘.\g-
ables y; by means of the variable changes (5.4-2). The mtcgrund is change by
direct functional substitution. The limits change from the region Ry to the region
Ry. Finally, the differential hypervolume dxy o fIxN will cha.mgc to ll:c Yf\luc
[J}dy, * dyy (Spicgel, 1963, p. 182), wlu.:rc I.’Jlixs the m_;\_rg,mlude (?r lm‘c mo-r
,biant J of the transformations. The jacobian is the determinant of a matrix o

derivatives defined by

ATy v T}
Y, Yy
J=1 b (5.4-4)
aTFY - ATR'
Y, Yy

Thus, the left side of (5.4-3) becomes

J J‘fx...... Xl X1y oes Xpy) dy oo dxy

Rx

=J JfXI-c...XN(XI = Tl‘ll""xN:: Tf;l)l‘ll {lyl dyN (54-5)

Ry

¢+ After the German mathematician Karl Gustav Jukob Jucobi (1804-1851).
Lo
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Since this result must cqual the right side of (5.4-3), we conclude that
R CIYRPS 7Y =t xilX1 = Tih xy= TyOIJL (54-6)

When N = 1, (5.4-6) reduces to (3.4-9) previously derived for a single random

variable.
The solution (5.4-6) for the joint density of the new variables Y, is illustrated

here with an example.

Example 5.4-1 Let the transformations be lincar and given by
Y, = Ti{X,, X3) =aX, + hX,
Y, = (X, X3) =X,y +dX,

where a, b, ¢, and d arc rcal constants. The inverse functions arc casy (o
obtain by solving these two equations for the two variables X, and X, :

X, =T; (Y, ;) = (dY, — b¥y)/lad — be)
Xy =T (Y, Ya) = (=cY, + aY;)/lad = hc)
where we shall assume (ad — bc) # 0. From (5.4-4):

df(ad — be) ~b/ad — bc)
—cf(ad = be) af(ad — be)

1
= (ad — ho)

J =

Finally, from (5.4-6),

[eox dy, — by, —cyi +ay;
Y¥\ gd —be ' ad —be
Sy ) = lad — bel

55 LINEAR TRANSFORMATION OF
GAUSSIAN RANDOM VARIABLES

iy

Equation (.‘5.4-6) can be readily applied to the problem of lincarly transforming a
sct of gaussian random variables X, X;, ..., Xy for which the joint density of '
(5.3-12) applics. The new variables Y;, Y3,..., Yyarc T

Yoo a Xy bagg Xyt v Xy

Y1=(72|X|+ﬂ11X2+"'+(’1NXN (55-1)

Y~=(1N|X1 +“N2X2 '}‘"'+aNNXN

where the coefficients ay, i and j = 1, 2,....N
the following matrices:

o pfasy . s«
Il SHI e LT

s 2%,
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, are real numbers. Now if we define

ajy Gy ' Ay

(Ty=| e o (5.5-2)
(l,'” “;\Il v dnN
Y, 14 X, X,
(Yi=1: (7= iXl=1: 181 =
YN YN XN A-)N
(5.5-3)
then it is clear from {5.5-1) that
1Y) = [TIX] Y - I={TlIX - X (5.5-4)
(X1 =I[T1" 'Yl (X - R =IT1""1Y - VI {5.5-5)
so long as [T is nonsingular. Thus,
X, =T (Y0 ) = a'V, +a'Y, + o + a'™Yy (5.5-6)
.a_}_(l = aT‘-l = a'
a7, = 3, =4q (5.5-7)
X = Ry=d'(Y, = P) 4+ +a(Vy - ) (5.5-8)

from (5.5-5). Here a" represents the ijth element of [T

The density function of the new variables Y}, ..., Yy is found by solving the
right side of (5.4-6) in two steps. The first step is to determine [J|. By using
(5.5-7) with (5.4-4) we find that J equals the determinant of the matrix |T]™".

Henee,t

"'1

JI =T 'Y = 5.5-9

The second step in solving (5.4-6) procecds by using (5.5-8) to obtain
' N N _
Cuy = EL(X: = XXX, — 2= Y a*} d"ELYi — YXYn - 7.
k= m=}
N N
= Y a* 3 a"Cnyr, (5.5-10)

knl m=|

Since Cyy, is the ijth clement in the covariance matrix [Cyl of (5.3-12) and Cyya

t We represent the magnitude of the deteeminant of a matrix by [I['J]|.
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is the kmth element in the covariance maltrix of the new variables Y, which we
denote [Cy], (5.5-10) can be written in the form

[Cxb=1TI7CHTY) (5.5-11)
Here [ T) represents the transpose of | 7], The inverse of (5.5-11) is
1Cy " =THIC) T} (5.5-12)
which has a determinant
HCA™ = ICh™ " TP (5.5-13)

On substitution of (5.5-13) and (5.5-12) into (5.3-12):

le...,.X,v(xl =T ..., Xy =Ty

I e exp {_ Ix — XV[THC ™ ITHx — X

(2ﬂ)~/2 2 } (5'5'14)

Finally, (5.5-14) and (5.5-9) are substituted into (5.4-6), und (5.5-4) is used 1o
oblain

: iy - Py = ¥
Sor ooy = G cxp{_ly MICH "y l}

(2mM? 2

This result shows that the new random variables Y., Y.,
1un because (5.5-15) 1s of (he required form,
In summary, (5.5-15) shows that a linear transformation of gaussian random

variables produces gaussian random variables. The new variables have mean’
values
=

(5.5-15)

...y Yy are jointy gauss-

N
P= Ya,X, (5.5-16)
k=

from (5.5-1) and covariances given by the elements of the covariance matrix

ICol = [THNCHTY (5.5-17)

as found from (5.5-11).

Example 5.5-1 Two gaussian random variables X, and X, have zero means
and variances o}, = 4 and a2, = 9, Their covariance Cy,x, cquals 3. IF X,
and X, are linearly transformed 1o new variables Y, and Yy according to

Y, =X, -2X,
Y, = 3X, + 4X,

we use the above results to find the means, variances, and covariance of Y,
and Y,

_—

SRR B AR s Yo R TE ey L S A
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[lere

1 =27 4 3
(T] = [3 4J and ICxl = 39

Since X, and X, are zero-mean and gaussian, Y, and Y, will also be zero-
mean and gaussian, thus ¥, = 0and ¥, = 0. From (5.5-17):

1o—24 3 1 3'1_[ 28 -oo'J
1cyl=lTllcxllTl’=l3 4JL3 94l.—2 41 [-66 252

Thus, o}, = 28, 0}, = 252, and Cy,y, = —66.

*5.6 COMPLEX RANDOM VARIABLES

A complex random variable Z can be defined in terms of real rundqm variables X
and Y by

Z=X+jY (5.6-1)

I ) . . sint density of
where j = /= 1. In considering expected values involving Z, the joint densily

X and Y must be used. For instance, if ¢(+) is some function (real or complex) of
Z, the expected value of g(Z) is obtained from

E[¢(Z)] = Jw r g(2) fx, v(x, y) dx dy (5.6-2)

- @ -
Various important quantities such as the mean valu'c and variance arc
obtained through application of (5.6-2). The mean value of Z is

Z = E[Z) = E[X] +jE[Y) =X +j7¥
The variance o2 of Z is defined as the mean value of the function ¢(Z) =
|Z — E[Z]]?; that is,

(5.6-3)

o} = E[1Z - E[Z]V] (5.6-4)

Equation (5.6-2) can be extended to include functions of two random
variables

Z,=X,+jYs (5.6-5)

and

Z,=X,+jY, {5.6-0)

n # m, il expectation is taken with respect to four random variables X,,,‘, Yo ,‘\.,,.
Y, through their joint density function fx, v, x..r.(Xms Yu» Xas ¥ I[ this density
n

satisfies

f.\’,... Yms Xuns Y.(xm v Yo Sns yn) =fx... Y...(xm s Ym)fx,.. Y.(xn ’ }'..) (56'7)
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then Z,, and 7, arc called statistically independent. The extension to N random

variables is straightforward.
The correlation and covariance of Z,,and Z, arc defined by

Ry = E[Z8Z,] n#Em (5.6-8)
and
(‘an. = "[{Zm - l':[zm]}*{zn - 1':[2"”_] n#m (56'9)

respectively, where the superscripted asterisk* represents the complex conjugale.
If the covariance is 0, Z,, and Z, arc said to be uncorrelated random variables, By
sctting (5.6-9) to 0, we find that

R,z = E[Z}E(Z,) m#n (5.6-10)
for uncorrclated random variables. Statistical independence is sufficient lo guar-

antee that 7, and Z, are uncorrelated.
Finally, we note that two complex random variables arc called orthogonal if

their correlation, given by (5.6-8), equals 0.

PROBLEMS

5.1 Random variables X and Y have the joint density

1
— 0<x<6 and O<y<4d
Lol ¥ = 24 '
0 elsewhere

What is the expected value of the function g(X, Y) = (X Yy

5.2 Extcnd Problem 5-1 by finding the expected value of g(Xy, X3, XN Xg) =
XTXRNPNE, where iy, 1, 1y, and ng arc integers 20 and

!
-— 0<.\',<uand0<x2<bandO<x,<c

abed
fx..,\',.,\';..\u(-\'l-xz’-\'s,-"4)= and 0 < x, < d
0 " clsewhere
5.3 The density function of two rand;om variables X and Y is
E feorl, 3) = G164

Find the mean value of the function

| , |
5 0<XS§ and 0<}$2

N = | 1
i ¥) -1 3 <X and/or 3 <Y

0 all other X and Y
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5.4 For the random variables in Problem 5-3, find the mean value of the
function

gx, V)= €2
5.5 Three statistically independent random variables X, X,.and X, have mean
values X, =3, £, =6, and Xy = —2. Find thc mean values of the following
functions:
(@) g(X 0 X2, X3) =X, 43X, +4X,
(h) g(X 1, X2y X3) = XXXy
© ¢(Xy Xq, X3)= =2X,X; = 3X, X5 + 4X, X,
) gX X2, X3) =X, + X3 + X,
5.6 Find the mean value of the function
gX,V)=X*+ y?

where X and Y are random variables defincd by the density function
-{(x2+yd)202

Sxoox, y) =

2na?

with o a constant.
5.7 Two statistically independent random variables X and ¥ have mean valucs
X = E[X]=2and ¥ = E[Y] = 4. They have sccond moments X =E[X¥) =8
and Y2 = E[Y?] = 25. Find: ‘

(a) the mcan value (b) the second moment and

(¢) the variance of the random variable W = 3X - Y.

5.8 Two random variables X and Y have means X =1 and ¥ =2, variances
o} = 4 and o} = 1, and a corrclation coeflicient pyy = 0.4, New random variables
I and V are defined by

Ve==X+12Y W=X+13Y
Find:
(a) the means (b) the variances (¢) the correlation and
(d) the correlation coefficient pyw of Vand W.

5-9 Two random variables X and Y are related by the expression
Y=aX+b

where a and b are any real numbers.
(a) Show that their correlation coeflicient is

_ { if a > 0 for any b
P=1-1 ifa<0foranybd

(b) Show that their covariance is
Cyy = ua}

wicic % is the variance of X.

8 &

‘».



i
B
N
33t
iR
[t
%

$ Y9 FRUBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINGIPLES

* . .
§-10 Show thal the correlation cocllicient satisfies the expression

- [, ]

lpl ES
Moz Hao

1

5-11 Find all the second-order moments and central moments for the density

function given in Problem §5-3,

5-12 Random variables X and Y have the joint density function

2
ﬁv.r(»}'):{(x'*'}’) /40 —l<x<1 and
0 elsewhere

-JI<y<3

() Find all the second-order moments of X and Y.
(b) What are the variances of X and Y?
(¢} What is the correlation coefficient?

5-13 Find all th ird- H .
Problem 5-?2. ¢ third-order moments by using (5.1-5) for X and Y defined in

5-14 For fiiscrele random variables X and Y, show that:
(a) Joint moments are

N M
My, = ‘Zl /Z P(x;, y)xiy
- =]
(b) Joint central moments are
N M
Hm = E Z Plx;, y)x, = X)"(,VJ ~ Py

Im1 jmy

where P(x;, y) = P{X =x,, Y = X has N i
possitle vaturs . f v as N possible values x;, and Y has M

5-15 For two random variables X and Y:
Jx, ¥(x, y) = 0.158(x + N(y) + 0.18(x)d(y) + 0.18(x)é(y — 2) + 0.46(x — 1)3(y + 2)
+ 0.28(x —~ 1é(y ~ 1) + 0.05(x — 1)d(y — 3)

Find: (4) th i ; ,
of X and }g,) c» correlation, (b) the covariance, and (c) the correlation coefficient

(d) Are X and Y cither uncorrelated or orthogonal?
5-16 Discrete random variables X and Y have the joint density
Jx. r(%, y) = 048(x + a)d(y - 2) + 0.35(x — a)é(y — 2)
+0.1(x — )3y — a) + 0.26(x — 1)5(y — 1)

Determine thc.vz'iluc of «, if any, that minimizes the correlation between X and Y
and find the minimum correlation. Are X and Y orthogonal?
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5-17 For two discrete random variables X and Y:
Jx y(x, p) = 0.38(x — a)d(y — o) + 0.55(x + a)3(y — 4) + 0.28(x + 2)3(y + 2)

Determine the value of o, if any, that minimizes the covariance of X and Y. Find
the minimum covariance. Are X and Y uncorrelated?

5-18 The density function

x U
. X ovex<2 and D<y<l
Sy r(x, y) = 9 .
0 clsewhere :

applics to two random variables X and V.
(a) Show, by usc of (5.1-6) and (5.1-7), thut X and Y are uncorrelated.
(h) Show that X and Y are also statistically independent.

5-19 Two random variables X and Y have the density function

fo vl y) %(.\‘+0.5y)2 0<x<2 and 0O<y<3
x G Y=

0 elsewhere

(a) Find all the first- and second-order moments.
(b) Find the covariance.
(¢)- Are X and Y uncorrelated?

5-20 Define random variables V and W by
V=X4+aY
We=X-aY

where « is a real number and X and Y are random variables. Determine o in
terms of moments of X and Y such that ¥ and W arc orthogonal.

*5.21 If X and Y in Problems 5-20 are gaussian, show that W and V¥ are sta-
tistically independent if a® = a}/e}, where o and o} are the variances of X and
Y, respectively.

5-22 Three uncorrelated random variables X, X,, and Xy have means X, = {,

X,= -3, and ¥, =15 and second moments E[X?] =25, E[X]] =11, and
ELN2} =35 Let Y = X, —2X, + 3X, be a new random variable and find:

() the mean value, (h) the variance ol Y.

5.23 Given W = (uX + 3Y)? where X and Y arc zero-mean random variables
with variances o2 = 4 and o7 = 16, Their corrclation cocfficient is p = —0.5.

(@) Find a value for the parameter a that minimizes the mean value of W.

(b) Find the minimum mean value.

*5.24 Find the joint characteristic function for X and Y defined in Problem $-3.
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*5.25 Show that the joint characteristic function of N independent random vari-

~ ables X,, having characteristic functions by (w) is

N
Oy, x @1 ey WN) = [T ®xfw)
in1

*5.26 For N random variables, show that
[y, e e )| S PO 0=

*5.27 For lwo zero-mcan gaussian random variables X and Y, show that their
joint characteristic function is

Dy, ylw,, y) =cxp {- hilokwt + 2payayw0; + ot wil}

*§.28 Zcro-mean gaussian random variables X and ¥ have variances % = 3 and
al = 4, respectively, and a correlation cocellicient p = =Y.
(@) Write an expression for the joint density function.
(h) Show that a rotation of coordinates through the angle given by (5.3-11)
will produce new statistically independent random variables. '
45,29 1ind the conditional density functions fy(x| Y = p) and fylp) X = x) nppli-
cablc to two gaussian random variables X and Y defined by (5.3-1) and show
that they are also gaussian.

*5.30 Zcro-mean gaussian random variables Xy, X5, and X, having a covariance
matrix

4 205 105
[Cxl=]205 4 205
1.05 205 4 .

are trunsformed to new variables
Y, =5X, +2X, - X,
,=-X, +3X,+ X,
¥, = 2X, - X, + 2N,

(a) Find the covariance matrix of Y;, Y, and Y;.
(b) Write an expression for the joint density function of Yy, Y,,and Y;.

*5.3] A complex random variable Z is defined by
7 = cos (X) +j sin (Y)

where X and ¥ are independent real random variables uniformly distributed
from —nton.

(a) Find the mean valuc of Z.

(h) Find the variance of Z.

. Af:-
~:
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ADDITIONAL PROBLEMS

5.32 Two random variables have a uniform density on a circular region de-
fined by
ynrt  x*+yisr?
Srx 9= {0 clsewhere

Find the mean value of the function g(X, Y) = X* + Y2,

*5.33 Definc the conditional expected value of & function ¢(X, Y) of random vari-
ables X and Y as

E[g(X, Y}|B] = _[ j glx, N Sx.v(x, y1B) dx dy

-0 J-

{a) 1f event B is defined as B = {ya < Y < 3}, where y, <y, are conslants,
evaluate E[g(X, Y)| B]. (Hint: Use results of Problem 4-55.)
(b) 1f B is defined by B = {Y =y} what does the conditional expected value

of part (a) become?
5.34 For random variables X and Y having =1 F=20l=60}=9 and
pm =3, nd (a) the covariance of X nnd Y, (b) the correlnlon of X and Y,
and () the moments myq and mg; . '
5.35 X = Y, Xi=%,P=2 Y? =19, and Cyy = -l/Zﬁ for random vari-
ables X and Y.

(a) Find 0%, 6}, Ryy,and p.

(b) What is the mean value of the random variable W = (X +3Y)? +
2X + 317
5.36 Let X and Y be statistically independent random variables with £ = %,
Xi=4 P=1, and Y?=5. For a random variable W = X —2Y + | find
(@) Ryy, (b) Ryw,(¢) Ryw, and (d) Cyy-(e) Are X and Y uncorrclated?
5.37 Statistically independent random variables X and Y have moments m o =
2, My = 14,mgy = 12,and myy = —6. Find thc moment ji3,.

5.38 A joint density is given as
x(y + 1.5
S, v(x, y= {0 Y )
Find all the joint moments m,, n and k=01,....
5.39 Find all the joint central moments L, n and k=0, 1,..., for the density of
Problem 5-38.
*5.40 Find the joint characteristic function for random variables X and Y de-
fincd by

O<x<! and O<y<l
elsewhere

Sx.o(x, ) = (1/2x) rect (x/m) rect [(x + y)/n] cos (x + )

Usec the result to find the marginal characteristic functions of X and Y.
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. . s oee define ¢ mean and
. #5.50 Two gaussian random variables X, and X', are defined by the mean 3

*5-41 Random variables X | und X ; have the joint characteristic function ¥ ! ian
. covariance matrices

Dy xys, w3) = [(1 = j20, X1 ~ j2w,)]~M?

where N > Ois an integer.
(¢) Find the correlation and moments m,q and g, .
(b) Determine the means of X, und X,.
(c) What is the correlation coefficient?

el 2] eas] s

s Y, and Y, are formed using the transformation

m= "]

a) 171 and (b) {Cy). (c) Also find the correlation coefficient of Y,

.

Two new random variable

*5-42 The joint probubility density of two discrete rundom variables X and Y
consists of impulses located at all lattice points (mb, nd), where m=0, 1, ..., M
and n=1,2,..., N with b> 0 and d > 0 being constants. All possible points are

540 Loy Tor £ 13 K. 0 sy it .- A "ansdl Yé. mplex random variables Z, and Z, have zcro means. Th'c corrcluliop of

. 15};e rcalopa‘;ts of Z, and Z, is 4, while the correlation of' tl.xc'lmlz;glir::ldrg' Z;::’l:nnls ‘?s

The real part of Z, and the imuginqry part of Z, ar'e st.\;|§/uc:\ y P

a pair, as are the imaginary part of Z, illld’lht.:’ real part of Z,.

(a) What is the correlution of Z.l and Z,7? ‘
(h) Are Z, and Z, statistically independent?

*$43 Let X,, k=1,2, ..., K, be statistically independent Poisson random vari- i
ables, each with its own variance b, (Problem 3-16). Show that the sum X = 4

Xy + X+ o0+ X is u Poisson random variable. (Hint: Use results of Prob-
lems 5-25 and 3-53.)

5-44 Assume gy = 0, = ¢ in (5.3-1) and show that the locus of the maximum of
the joint density is u linc passing through the point (£, 7) with slope n/4 (or
—n/4) when p = 1 (or —1).

5-45 Two gaussian random variables X and Y have variances o} =9 and o} =
4, respectively, and correlation coeflicient p. It is known that a coordinate rota-

lion by an ungle —n/8 results in new random variables Y, and Y, that are uncor-
related. What is p?

*5-46 Let X and Y be jointly gaussian random variables where a3 = ol and
p = —1.Find a transformation matrix such that new random variables Y, and Y,
are statistically independent,

*5-47 Random variables X and Y having the joint dénsity

Sx, v, y) = (hlulx — Quly — 1)xy? exp (4 ~ 2xy)
undergo a transformation
1 1
71 = [1 - 1]

to generate new random variables Y, and ;.
(a) Find the joint density of Y, and Y,.

(b) Show what points in the y,y, plane correspond (o a nonzero value of the
new density,

*5-48 Equation (5.4-S) can sometimes be used to find the density of a single func-
tion of several random variables if auxiliary random variables are used. Apply the
idea to finding the densily function of Z = aX Y, where a is a constant and X and
Y are random variables, by defining the auxiliary variable W = X,

*5-49 Apply the method of Problem 5-48 to finding the density function of
Z = bY/X, with b a constant, when using the auxiliary variable W = X.

e oh
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notation x(t) to represent a specific waveform-of a random process denoted by
X(1).

Clearly, a random process X(t, s) represents a family or ensemble of time
functions when t and s are variables. Figure 6.1-1 illustrates a few members of an
ensemble. Each member time function is called a sample function, ensemble
member, or sometimes a realization of the process. Thus, a random process also
represents a single time function when ¢ is a variable and s is fixed at a specific
value (outcome).

A random process also represents a random variable when ¢ is fixed and s is
a variable. For example, the random variable X(ty, 5) = X(t,) is obtained from
the process when time is “frozen™ at the value ;. We often usc the notation X :
o denote the random variable associated with the process X(1) at time {,. X, cor- 1
responds to a vertical “slice” through the ensemble at time t,, as illustrated in
Figurc 6.1-1. The statistical properties of X, = X(t,) describe the statistical
properties of the random process at time ¢,. The expected value of X, is called
(he ensemble average as well as the expected or mean value of the random process
(at time t,). Since t; may have various values, the mean valuc of a process may
not be constant; in general, it may be a function of time. We casily visualize any

CHAPTER

SIX
RANDOM PROCESSES

6.0 INTRODUCTION

In the real world of engincering and science, it is necessary that we be able to "% Xanal?) i
deal with time waveforms. Indeed, we frequently encounter random time wave-
forms in practical systems. More often than not, a desired signal in some system
is random. For example, the bit stream in a binary communication system is a
random message because each bit in the stream occurs randomly. On the other
hand, a desired signal is often accompanied by an undesired random waveform,
noise. The noise interferes with the message and ultimately limits the performance
of the system. Thus, any hope we have of determining the performance of systems
with random waveforms hinges on our ability to describe and deal with such
waveforms. In this chapter we introduce concepts that allow the description of
random waveforms in a probabilistic sensc.

Xpaill)

N |/*/\/\
“ N " N~

EN )

6.1 THE RANDOM PROCESS CONCEPT

The concept of a random process is based on enlarging the random variable
concept to include time. Since a random variable X is, by its definition, a func-
tion of the possible outcomes s of an experiment, it now becomes a function of  * )
both s and time. In other words, we assign, according to somc rulc, a time . \

function Flgure 6.1-1 A continuous ) '
___.\ ; /-\'L\\/ random process. [Reproduced v
0 \,'/——J ! I from Peebles (1976) with per-
o mission of publishers Addison-

. Wesley, Advanced Book Pro-
. gram.)

(1, 8) 6.1-1)

to cvery outcome s. The family of all such functions, denoted X(t, 5), is called a
random process. As with random variables where x was denoted as a sprcific
value of the random variable X, we shall often use the convenicnt short-form

5
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number of random variables X, derived from a random process X{r) at times (;,

RANDOM FROCESNEN 14D

If X is continuous and ¢ can have any of a continuum of values, then N(1) is

i=1,2,...:

Y called a continious random process. Figure 6.1-1 is an illustration of this class of
process. Thermal noise gencrated by uany realizable network is o practical
example of a waveform that is modeled as a sample function of a continuous
random process. In this example, the network is the outcome in the underlying
random experiment of selecting a network, (The presumption is that many net-
works are available from which to choose; this may not be the case in the real
world, but it should not prevent us from imagining a production line producing
any number of similar nctworks) Each network establishes a sample function,
and all sample functions form the process.t .

A second class of random process, called a discrete ramdom process, corre-
sponds to the random variable X having only discrete values while ¢ is contin-
wous. Figure 6.1-2 illustrates such a process derived by heavily limiting the
sample functions shown in Figure 6.1-1. The sample functions have only two dis-

X=X, )= X(1) (6.1-2)

. : dA random process can also represent a mere number when ¢ and s are both
o ixed.

Classification of Processes

It is convenient to cl.assify random processes according to the characteristics of ¢
and the random vunflble X = X(1) at time ¢. We shall consider only four cases
based on r and X having values in the ranges —oc0 <t < 00 and — o0 < x < .t

t Other cuses cun be defined bused on a definition of ra i

i ndom processes on u finite time interval
(sc;.for example: Rosenblatt (1974), p. 91; Prabhu (1965), p. 1; Miller (1974), p. 31; Parzen (1962)
P. 7; Dubes (1968), p. 320; Ross (1972), p. 56). Other recent lexts on random processes are Hclslron{
(1984), and Gray and Davisson (1986). :

. 1 Note that linding the mean value of the process al any time ¢ is equivatent (o linding the average
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Figure 6.1-4 A discrete random sequence formed by sampling the wavclorms of Figure 6.1-2,
[Adapted from Pechles (1976) with permission of publishers Addison-Wesley, Advanced Book Program.}

crete values: the positive level is generated whenever a sample function in Figure
6.1-1 is positive and the ncgative level pccurs for other times.

A random process for which X is continuous but time has only discrete
values is c¢alled a continuous random sequence (Thomas, 1969, p. 80). Such a
sequence can be formed by periodically sampling the ensemble members of
Figure 6.1-1. The result is illustrated in Figure 6.1-3.

A fourth class of random process, called a discrete random sequence, corre-
sponds to both time and the random variable being discrete. Figure 6.1-4 illus-
trates a diserete random scquence developed by sampling the sample functions of
Figure 6.1-2. .

In this text we arc concerned almost entirely with discrete and continuous

random processes.
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Decterministic and Nondeterministic Processes

1n addition to the classes described above, a random process can be described by
the form of its sample functions. If future values of any sample function cannot be
predicted exactly from observed past values, the process is called nondeterministic.
“I'he process of Figure 6.1-1 is one example.,

A process is called deterministic if future values of any sample function can be
predicted from past values. An example is the random process defined by

X(1) = A cos (wy 1.+ ©) (6.1-3)

Here A4, ©, or w, (or all) may be random variables. Any one sample function cor-
responds to (6.1-3) with particular values of these random variables. Thereflore,
knowledge of the sample function prior to any time instant automatically allows
prediction of the sample function's future values because its form is known.

6.2 STATIONARITY AND INDEPENDENCE

As previously staled, a random process becomes a random variable when time is
fixed at some particular value. The random variable will possess stalistical
properlies, such as a mean value, moments, variance, elc., that are related to its
density function. If two random variables are obtained from the process for two
time instants, they will have statistical properties (means, variances, joint
moments, etc) related to their joint density function. More generally, N random
variables will possess statistical propertics related to their N-dimensional joint
density function.

Broadly speaking, a random process is said to be stationary il all its sta-
tistical properties do not change with time. Other processes are called nonsta-
tionary, These statements are not intended as definitions of stationarity but are
meanl to convey only a general meaning. More concrete definitions follow.
Indecd, there are several “levels” of stationarity, all of which depend on the
density functions of the random variables of the process.

Distribution and Dénsity Functions

To define stationarity, we must first definc distribution and density functions as
they apply to a random process X(1). For a particular time t,, the distribu-
tion function associated with the random variable X, = X(¢,) will be denoted
Fy(x,; t;). Itis defined ast

Fx(x,;ll)=P{X(I,)5x,} {6.2-1)

1 Flx,: 1,) is known as the first-order distribution finction of the process X{1).
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fpr ar;y rczfl number x,. This is the same definition used all along for the distribu-
u%n unction of or.mc'rando.m variable. Only the notation has been altered to
reflect the fact that it is possibly now a function of time choice ¢,.

For two random variables X, = X(t
. or dom 1 =X(t,) and X, = X(t,), the second- joi
distribution function is the two-dimensional cxtcnsizon of 262.)2-1): norder join

Fx(xi, %3500, 1) = P{X(t;) < x,, X(t,) < x5} (6.2-2)

In a similar manner, for N random var; j
s ariables X, = X(t),i=1, 2 N -
order joint distribution function is Y e M the Nk

Fxlxis ooy xnity, ooy th) = PUX(t) S %, ..., X(ty) < xp) (6.2-3)

Joint density functions of interest are f i
ound [rom appropriate derivati
the above three relationships:t °P P erivatives of

Slses 00 = dF (e 1,)dx, (6.2-4)
Ixlxy, X504, 1,) = 32 Falxy, x50y, 1)/(0x, dx,) (6.2-5)
Selxy, ooy xn s Tiseeey ) = (7”.F.’ﬁ(x,, e XL e B0X, 0 Oxy)  (6.2-6)

Statistical Independence

Two processes X (1) and Y(t) are statistically independent if the random variable
group X(1,), X(t,), ..., X(ty) is independent of the group Y(1}), Y(t3), ..., Y(r,)

for any choice of times 1,, ¢ 1 L A
an ( b lay oo, by, 1, £, .00, ty,. Independenc i
the joint density be factorable by grot;ps: B P " requires tha

fx.y(xn ey Xny Yy veey Iaes byyonny In» 1,1. veny I'M)

=fX(xh ooy Xy tl: ceey tN)fY(yl! cens Yags t’lr seay ‘IM) (6'2'7)

First-Order Stationary Processes

/-‘.\ random process is cz.lllcd stationary to order one if its first-order density func-
tion does not change with a shift in time origin. In other words

) Sxleis ) = fxlx,5 1, + Q) (6.2-8)

must be true for any 1, and any real nun . ] .
. § i nber A if X(¢) is (0 be a first-order siy-
tionary process. (1) rst-order st

Consequences of (6.2-8) are thal fy(x D1y) s i
’ ¢ é Xy, s independent .
process mean value E{X(1)] is a conslant? b P ntof ¢, and the

E[X(1)] = X = constant (6.2-9)

t Analogous to distribulion functions

these are called irst-, second-, und Nth-order density e
" €
./ " » l ) f

TRecewn 112
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To prove (6.2-9), we find mean values of the random variables Xy = X(¢,} and
X, = X(ty). For X:

E[X,]=E[X(t)]= J“’ Xy fxlxys 1) dxy (6.2-10)
For X,:

@

xg Sx(xq; tg) dx,t (6.2-11)

E[X,] = E[X(t;)] = I

.Now by letting f, =, + A in (6.2-11), substituting (6.2-8), and using (6.2-10),

we get
E[X(t, + A)] = E[X(1,)] (6.2-12)

which must be a constant because ¢, and A are arbitrary.

Second-Order and Wide-Sense Stationarity

A process is called stationary to order two if its second-order density [unction
satisfies

Sulxy, X251y, 80) = fulxy, X33 8y + A, 1y + 4) (6.2-13)

for all t,, t,, and A. After some thought, the reader will conclude that (6.2-13) is a
function of time differences t, — ¢, and not absolute time (let arbitrary A = —1,),
A second-order stationary process is also first-order stationary because the
second-order density function determines the lower, first-order, density.

Now the correlation E[X,X,] = E[X(¢,)X(t,)] of a random process will, in
general, be a function of 1, and t,. Let us denote this function by Ry(r,, 1;) and
call it the autocorrelation function of the random process X(1):

Ryxlty, 13) = E[X(£,)X(1,)]. (6.2-14)
A consequence of (6.2-13), however, is that the autocorrelation function of a
second-order stationary process is a function only of time dilferences and not
absolute time; that is, if

f=y =t (6.2-15)

then (6.2-14) becomes
Ryx(ty, ty + 1) = E[X(t)X(r, + v)] = Ryx(1) (6.2-16)

Proof of (6.2-16) uses (6.2-13); it is left as a reader exercise (sec Problem 6-6).
Many practical problems require that we deal with the autocorrelation
function and mean value of a random process. Problem solutions are greatly

t Note that the variable x, of integration has been replaced by the alternative variable x, for con-
venience.

Y
P

i
{f:'ffﬁ



yo—

P

e s

150 PRODADILITY, RANDOM VARIADBLES, AND RANDOM SIGNAL PRINCIPLLS

simplified il these quantities are not dependent on absolute time. Of course,
second-order stationarity is suflicient to guarantec these characteristics. How-
cver, it is often more restrictive than nccessary, and a more relaxed form of sta-
tionarily is desirable. The most useful form is the wide-sense stationary process,
defined as that for which two conditions are true:

E[X(t)] = X = constant (6.2-17a)
E[X(DX(t + 1)) = Ryxlt) (6.2-17h)

A process stationary to order 2 is clearly wide-sense stationary. However, the
converse is nol neeessarily triue.

Example 6.2-1 We show that the random process
X(t) = A cos (wet + O)

is wide-sense stationary if it is assumed that A4 and g arc constants and © is
a uniformly distributed random variable on the interval (0, 2n). The mean
valuc is '

in

1
ELX(1)] = j Acos (wot +0) —d0=0
o 2n
The autocorrclation function, from (6.2-14) with ¢, =t and t, =t +7,
becomes

Ryy(t, t + 1) = E[A cos (wo ! + ©)4 cos (ot + woT + O)]
KL
= T ELcos (g 1) -+ €08 (2wt 4 wg 1 + 20)]

Al AZ . ]
iy cos (g 1) - Y Elcos (2mgt + wy 1 -+ 20)]
The sccond term easily evaluates to 0. Thus, the autocorrelation function
depends only on t and the mean valuc is a constant, so X(1) is widc-scnse
stationary.

-

When we are concerned with two random processes X(t) and Y(1), we say
they arc jointly wide-sense stationary if cach satisfies (6.2-17) and their cross-
correlation function, defined in general by

Ryy(tyy 1) = ELX(1,)Y(t2)] (6.2-18)
is a function only of time difference © = ¢, — t; and not absolutc time; that is, if
Roplt, £ + 1) = ELX(OY(t + 0] = Ryy(2) (62-19)
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" N-Order and Strict-Sense Stationarity

By extending the above reasoning to N random variables X, = X{t), i =1, 2, ...,
N, we say a random process is stationary to order N if its Nth-order density func-
tion is invariant to a time origin shift; that is, if

Sx(xts coey Xns by ven W) = SxlX gy oo Xn U+ By oty + 4) 0 (6.2-20)

for alt 1,, ..., ty and A. Stationarity of order N implics stationarity to all orders
k < N. A process stationary to all orders N =1, 2, ..., is called strict-sense
stationary,

Time Averages and Ergodicity

The time average of a quantity is defined as

i T
ACY = lim == | []dt (6.2-21)
. T—oo 2T -T
Here A is used to denote time average in a manner analogous to E for the sta-
tistical average. Time average is taken over all time because, as applied to
random processes, sample functions of processes are presumed to exist for all
lime, ) :
Specific averages of interest are the mean value X = A[x(!)] of a sample func-
tion (a lower cuse letter is used to imply a sample function), and the time autocor-
relation function, denoted R (1) = A[x(1)x(t + 1)]. These functions are defined by

. i
X=Alx(t)] = 111:1; T J: Tx(t) dt (6.2-22)
Re(r) = ALx()x(! + 1))
N I
= Tll_:r; T J_ Tx(t)x(l + 1) dt (6.2‘-23)

I'or any one sample function of theiprocess X(f), these last two integrals
simply produce two numbers (for a fixed value of t). However, when all sample
functions are considered, we see that x and R,,(t) are actually random variables.
By taking the expected value on both sides of (6.2-22) and (6.2-23), and assuming
the expectation can be brought inside the integrals, we obtaint

E[%] = X (6.2-24)
E[R,.(1)] = Ryx(1) (6.2-25)

Now suppose by some theorem the random variables X and R,,() could be
made to have zero variances; that is, X and R, (1) aclually become constants,

1 We assumne also that X(1) is a stationary process so that the mean and the autocorretation func-
tion are no! time-dependent.
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Then we could write

i=X (6.2-26)
Rx(t) = Ryp(t) (6.2-27)

In other words, the time averages % and Jex(t) equal the statistical averages X
und Ryx(7) respectively. The ergodic theorem allows the validity of (6.2-26) nnd
(6.2-27). Stated in loose terms, it more generally allows all time averages to equal
the corresponding statistical averages. Processes that satisfy the ergodic theorem
are called ergodic processes. .

Ergodicity is u very restrictive form of stationarity and it may be difficult (o
prove that it constitutes a reasonable assumption in any physical situation.
Nevertheless, we shall often assume a process is ergodic to simplify problems. In
the real world, we are usually forced to work with only one sample function of a
process and therefore must, like it or not, derive mean value, correlation func-
tions, elc. from the time waveform, By assuming ergodicity, we may infer the
similar statistical characteristics of the process. The reader may feel that our
theory is on shaky ground based on these comments, However, it must be
remembered that all our theory only serves to model real-world conditions.
Therefore, what difference do our assumptions really make provided the assumed
model does truly reflect real conditions?

Two random processes are called Jjointly ergodic if they are individually

ergodic and also have a time cross-correlation function that equals the statistical
<ross-correlation function:+

Roy(t) = lim —= J i X(OWt + 7) dt = Ryy(x) (6.2-28)
T-w 2T -T .

6.3 CORRELATION FUNCTIONS

The autocorrelation and cross-correlation functions were introduced in the pre-
vious section. These functions are examined further in this section, along with
their properties. In addition, other correlationstype functions are introduced that
arc important to the study of random processes.

Autocorrelation Function and Its Propertics

Recall that the autocorrelation function of a random process X(t) is the correla-
tion E[X,X,] of two random variables X, = X(t,) and X, = X(t,) defined by
the process at times ¢, and ¢, Mathematically,

Ryxlty, 13) = E[X(1,)X(t,)] (6.3-1)

t As in ordinary stationarity, there are various orders of ergodic stationarity. For more detail on
ergodic processes, the reader is referred to Papoulis (1965), pp. 323-332,
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H , " oy 3.
For time assignments, f, = and (, =1, -+ 1, with v a real number, (6.3-1)
assumes the convenient form
. 4 i el
Ryxlt, t + 1) = E[X(0)X( + 1)] (6.3-2)
If X(1) is at least wide-sense stationary, it was noted in Section 6.2 that

Ryxlty £ 4 1) must be a function only of time difference t =, — 1. Thus, for
wide-sense stationary processes

Ryx(r) = E[X(DX(1 + 1)) (6.3-3)
For such processes the autocorrelation function exhibits the following—p‘ropcrlics:
(1) [Rxx(r)] < Ryx(0) (6.3-4)
(2) Ryx(—1) = Ryx(r) (6.3-5)
(3) Ryx(0) = E[X*1)] (6.3-6)

The first property shows that Ry{t) is bounded by its value at the origin, \s{hxlc
the third property states that this bound is cqual !o !hc mean-squared value
called the power in the process. The sccond property indicates that an aulocor‘rc-
lation function has even symmetry. '

Other properties of stationary processes may also be stated [see Cooper and
McGillem (1971), p. 113, and Melsa and Sage (1973), pp. 207-208]:

(4) 11 E[X(1)] = X # 0 and X(¢) has no periodic components then

lim Ryy(t) = X2 (6.3-7)
fe} = w
(5) If X(r) has a periodic component, then Ry,(tr) will have a pcrio'dlc com-
ponent with the same period. o (6.3-8)
(6) If X(¢) is ergodic, zero-mean, and has no periodic component, then
lim Ryy(t) =0 (6.3-9)
X
(7) Ryx(r) cannot have an arbitrary shape. (6.3-10)

Properties 4 through 6 arc more or less sclf-explam\(o‘ry. Prope:rty 7 si.mply says
that any arbitrary function cunnot be an aulocorrc!nl'lon funcuor_n This fact will
be more apparent when the power density spectrum is mtrod'uccd in Chapter 7. It
will be shown there that Ry (1) is related to the power dcnsx{y spectrum through
the Fourier traimsform and the form of the spectrum is not arbitrary,

EExample 6.3-1 Given the autocorrelation function for & stationary process is

. =2
R.\"\(T) 25 + 1 + 61'2

we shall find the mean value and variance of the process X(t). From property
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4, the mean value is E[X(1)] = X = /25 = +5. The variance is given by
(3.2-6), so

a} = E[LX*0] — (E[X(0])?
But E[X2(1)] = Ryx(C) = 25 + 4 = 29 from property 3, s0
ol =29—25=4

Cross-Corrclation Function and Its Properties

The cross-correlation function of two random processcs X(0) and Y(r) was defined
in (6.2-18). Setting t, = t and T = {; — [, we may write (6.2-18) as

Ryy(t, t + 1) = E[X(O)Y(t + 1)] (6.3-11)

If X(t) and Y(1) arc at least jointly wide-scnsc stationary, Ryy(t, t + 1) is indepen-
dent of absolute time and we can write

Ryplt) = E[X(OY(t + ¥)) (6.3-12)

I
Ryglt, t - 1) =10 (6.3-13)

then X(1) and Y(1) arc called orthogonal processes. If the two processes are sla-
tistically independent, the cross-corrclation function becomes

Ryylt, t + 1) = E[X(ELY( + )] (6.3-14)

If, in addition to being independent, X() and Y(1) arc at least wide-sense station-
ary, (6.3-14) becomes

Ry(t)=X? (6.3-15)

which is a constant.
We may list some propertics of the cross-correlation function applicable to

processes that arc at least widc-sensc stationary:
(1) Ryy(—=1) = Ryxl(1) (6.3-16)
B @ 1Rer®)1 S /RerlORyr(0) (63-17)
3) | Ryyr(1)] < hIRxx(0) + Ryy(0)] (6.3-18)

Property | follows from the definition (6.3-12). It describes the symmetry of
Ryy(x). Property 2 can be proven by expanding the incquality

E[{Y(t + 1) + aX(0)}*] 20 (6.3-19)

where a is a real number (see Problem 6-27). Properties 2 and 3 both constitute
bounds on the magnitude of Ryy(1). Equation (6.3-17) represents a tighter bound
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than that of (6.3-18), because the geometric mean of two positive numbers cannot
exceed their arithmetic mean; that is

VRxx(ORy(0) < i[Rxx(0) + Ryy(0)] (6.3-20)

Example 6.3-2 Let two random processes X (1) and Y(r) be defined by
X(t) = A cos (we t) + B sin (wy?)
Y(t) = B cos (wot) — A sin (wo!)

where A and B are random variables and w, is a constant. It can be shown
(Problem 6-12) that X(t) is wide-scnsc stationary il A and B are uncorrclaled,
zero-mean random variables with the same variance (they may have different
density functions, however). With these same constraints on A and B, Y(t) is
also wide-sense stationary. We shall now find the cross-correlation function
Ryy(t, t + 1) and show that X(¢) and Y(1) arc jointly wide-sense stationary.
By use of (6.3-11) we have '

Ryylt, t + 1) = E[LX(OY(t + 1)}
= E[AB cos (wqt) cos (we! + wo 1)
4+ B2 sin (g t) cos (wo ! + o T)
— A? cos (we ) sin (wet + wo 1)
— AB sin {wq 1) sin (wo! + 057)]
= E[AB] cos (2wg t + we 1)
+ E[B*] sin (wo 1) cos (wo!t + W 1)
— E[A?] cos (wo t) sin (wo ! + wo 1)

Since A and B are assumed to be zero-mean, uncorrelated random variables,
E[AB]) = 0. Also, since A and B are assumed to have equal variances,
E[A?] = E[B*] = ¢* and we obtain

! Ryylt, t + 1) = —0? sin (wo1)

Thus, X(t) and Y(1) are jointly wide-sense stationary because Ryylty t + 1)
depends only on 1.

Note from’ the above result that cross-correlation functions are not
necessarily even functions of t with the maximum at t = 0, as is ¢he case with
autocorrelation functions.

Covariance Functions

The concept of the covariance of two random variables, as defined by (5.1-13),
can be extended to random processes. The autocovariance function is defined by

Coxlts t + ) = E[{X() — ELX(OIHX(c + ©) — ELX(¢ + 0])]  (63-21)
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which can also be put in the form
Coxlt, t + 1) = Ryplt, t + 1) — E[X()JE[X(t + 7)) (6.3-22)
The cross-covariance function for two processes X(t} and Y(r) is defined by
Cxrlt, 0 + 1) = E[{X(0) = E[XO)}{Y(t + 1) — E[Y(t + 1)) (6.3-23)
or, alternatively,
Cxvlt,t + 1) = Ryylt, t + 1) — E[X()]ELY(t + 1)] (6.3-24)
For processes that are at least jointly wide-sense stationary, (6.3-22) and
(6.3-24) reduce to _
Cxx(t) = Ryx(x) - X2 : (6.3-25)
and :
Cxr(t) = Ryylt) — X7 ' (6.3-26)
The variance of a random process is given in general by (6.3-21) with t = 0.

For a wide-sense stationary process, variance does not depend on time and is
given by (6.3-25) with t = 0: :

o = E[{X(1) — ELX()]}?] = Ryx(0) - X? (6.3-27)
For two random processes, if
Caltt +1)=0 (6.3-28)
they are called uncorrelated, From (6.3-24) this means that
Ryy(t, t + 1) = E[X(D]E[Y(t + )] (6.3-29)

Since this result is the same as (€.3-14), which applies to independent processes,
we conclude that independent processes are uncorrelated. The converse case is
not necessarily true, although it is true for Jjointly gaussian processes, which we
consider in Section 6.5. S

v

64 MEASUREMENT OF CORRELATION FUNCTIONS

In the real world, we can never measure the true correlation functions of two
random processes X(1) and Y(1) because we never have all sample functions of the
ensemble at our disposal. Indeed, we may typically have available for measure-
ments only a portion of one sample function from each process, Thus, our only
recourse is to determine time averages based on finite time portions of single
sample functions, taken large enough to approximate true results for ergodic pro-
cesses. Because we arc able to work only with time functions, we are forced, like
it or not, to presume that given processes are ergodic. This fact should not prove
too disconcerting, however, if we remember that assumptions only reflect the
details of our mathematical model of a real-world situation. Provided that the
model gives consistent agreement with the real situation, it is of little importance
whether ergodicity is assumed or not.
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) A | Detay
4 T-1 *

Product

| H+2T 2
T f"l () dt PP Rolt, +2T)

Figure 6.4-1 A time cross-correlation function measurement system. Autocorrelation function mea-
surement is possible by connecting points 4 and 8 and applying either x{1) or j{1).

Figure 6.4-1 illustrates the block diagram_or a possibl_c system for measuring
the approximate time cross-correlation function of two jointly ergodic rund?m‘
processes X(t) and Y(t). Sample functions x(¢) and y(t) arc delayed by :\.moun(s 7
and T — 7, respectively, and the product of the delayf:d waveforms is formed.
This product is then integrated to form the output'whnch (.:quals l.hc mtcgrz.ll at
time t, + 2T, where ¢, is arbitrary and 2T is the integration period. The inte-
grator can be of the integrate-and-dump variety described by Pcebles (1976,
p. 361). . . g ..
If we assume x(¢) and y(r) exist at least during the interval =T < and ¢ is
an arbitrary time except 0 < ¢, then the output is easily found to be

1 n+T
Rty +2T) = — x(Oy(t + 1) dt (6.4-1)
¢ 2 1 =T
Now if we choose ¢, = 0t and assume T is large, then we have
T
R,(2T) = Elf x(Op(t + 1) dt = R, (1) = Ryy(7) (6.4-2)
-T

Thus, for jointly ergodic processes, the system of Figure 6.4-1 can approximately
measure their cross-correlation function (v is varied to obtain the complete
function). . . |
Clearly, by connccting points A and B and applying cither x(¢t) or y{t) to the
system, we can also measure the autocorrelation functions Ryy(t) and Ry (7).

Example 6.4-1 We connect points 4 and B together in Figure 6.4-1 and use
the system to measurc the autocorrelation function of the process X(f) of
Example 6.2-1. From (6.4-2)
"
R(2T) = 517 J A? cos (ot + 0) cos (wot + 0 + wy1) dt
-T

2 rT '
= 4~ [cos {wo T) + €08 2wyt + 20 4 wy1)] dt
4T °
_’,'
In writing this result 0 represents a specific value of the random variable ©;

t Since the processes are assumed jointly crgodic and therefore jointly stationary, the integral
(6.4-1) will «end to be independent of 1, if T is large enough.
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the value that corresponds {o the specific enscmble member being used in
(6.4-2). On straightforward reduction of the above integral we obtain
R2T) = Rux(®) + &(T)
where
Ryxlt) = (4%/2) €05 (@a T)
is the true autocorrelation function of X(1), and
sin 2wy T)
2w, T
is an crror term. If we require the error term's magnitude to be at least 20
times smaller than the largest value of the true autocorrelation function then
1e(T)] < 0.05R xx(0) is nccessary. Thus, we must have 12w T < 0.05 or
T = 10/w,

In other words, if T = 10/w, the crror in using Figurc 6.4-1 lo mcasure the
autocorrelation function of the process X(t) = A cos (wot + ©) will be 5%
or less of the largest valuc of the truc autocorrelation function.

oT) = (A2/2) cos (wo T + 20

6.5 GAUSSIAN RANDOM PROCESSES

A number of random processcs arc important cnough to have been given names.
We shall discuss only the most important of these, the gaussian randony process.

Consider a continuous random process such as illustrated in Figure 6.1-1
and deline N random variables Xy = XU oees X=X - Xn = X(ty) corre-
sponding to N time instants £y, ..oy {1y oo ty. If, for any N =1, 2, ... and any
times t, ..., Iy, thesc random variables arc jointly gaussian, that is, they have a
joint density as given by (5.3-12), the process is called gaussian. Equation {5.3-12)
can be written in the form

_ o {—(1/2x — XJICH Uy = X1 (6.5-1)
JEmMHCK

where matrices {x — K] and [Cyl are defined in (5.3-13) and (5.3-14) and (5.3-15),
respectively. The mean valnes X, of X(t)are

X, =lE[X‘] = E[(X(t)] {6.5-2)
The clements of the covariance matrix [Cy] arc
Cu=Cxn = E[(X; - X)Xy~ XJ]
= E[{X(t) — ELX()}{ X0 — E(X(t))})
= Cxxltis 1) (6.5-3)

which is the autocovariance of X(t) and X(,) from (6.3-21).

R TR IR PO
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From (6.5-2) and (6.5-3), when uscd in (6.5-1), we sce that the mean and auto-
covariance functions arc all that arc needed lo completely specily a gaussian
random process. By expanding (6.5-3) to get

Cxx(ti, i) = Ryx(tiy i) — E[X(¢)IECX (1] (6.5-4)

we sce that an alternative specification using only the mean and autocorrelation
function Ryx(t;, ty) is possible.

If the gaussian process is not stationary the mean and autocovariance func-
tions will, in general, depend on absolute time. However, for the important case
where the process is wide-sense stationary, the mean will be constant,

R, = E(X(¢t)]=X  (constant) {6.5-5)

while the autocovariance and autocorrelation functions will depend only on time
differences and not absolute time,

Cuxxltis t) = Cxxlte — 1) (6.5-6)
Ryx(tis i) = Rxx(ti — 1) (6.5-7)

It follows from the preceding discussions that a wide-scnsc stationary gauss-
ian process is also strictly stationary.
We illustrate some of the above remarks with an example.

»

Example 6.5-1 A gaussian random process is known to be wide-sense sta-
tionary with a mean of X = 4 and autocorrclation function

Ryx(t) = 25¢ M

We seek to specify the joint density function for threc random variables X(¢)),
i=1,2, 3, defined at times t; = tp + [(i — 1)/2], with t, a constant.
Here t, — t; = (k — i)/2,iand k=1,2,3,50

Ryxlty — 1)) = 25e ™32
and
Cxlty — 1) = 25¢731 W2 — 16

from (6.5-4) through (6.5-7). Elements of the covariance matrix are found
from (6.5-3). Thus,

(25 — 16) (25¢~%* — 16) (25¢~5* - 16)
[Cxl =] (25e731* — 16) (25 — 16) (25e~3% — 16)
(25¢~¢* — 16) (25¢=%* — 16) (25 — 16)

and X, = 4 completely determine (6.5-1) for this case where N = 3.
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Two random processes X(1) and Y{t) are said to be Jointly gaussian if the
random variables X(ty), ..., X(ty), Y(t}), ..., Y(t},) defined at times Ly, eeny iy for
X(1) and times 1}, ..., ty, for Y(1), are jointly gaussian for any N, t,...,ty, M, 1},
R

*6.6° COMPLEX RANDOM PROCESSES

Hf the complex random variable of Section 5.6 is generalized (o include time, the
result is a complex random process Z(t) given by

Z() = X(1) +JY(0) (6.6-1)

where X(r) and Y(r) are real processes. Z(1) is called stationary if X(1) and Y(1) are
jointly stationary. If X(¢) and Y(1) arc jointly wide-sense stationary, then Z{1) is
said to be wide-sense stationary,

Two complex processes Z(t) and Z (1) are joinlly wide-sense stationary if
each is wide-sense stationary and their cross-correlation function (defined below)
is a function of time differences only and not absolute time.

We may extend the operations involving process mean value, autocorrelation

function, and autocovariance function to include complex processes. The mean
value of Z(1) is

E[Z(1)] = E[X(1)]] + JE[Y(1)] (6.6-2)
Autocorrelation function is defined by
Ryt t + 1) = E[Z*()Z(¢t + 1)] (6.6-3)

where the asterisk * denotes the complex conjugate. Autocovariance Junction is
defined by

Caalty t + 1) = EL{Z(1) - ELZWI}*{Z(¢ + 7) - E[2( + 1)]))

If Z(1) is at least wide-sense stationary, the mean value becomes a constant

(6.6-4)

Z=X+j¥ (6.6-5)

and the correlation functions are independent of absolute time: .
Ruaty t + 1) = Ryy(v) (6.6-6)
Caa{t, 1 + 1) = Cyy() (6.6-7)

For two complex processes Z(r) and Z[1), cross-correlation and cross-
covariance functions are defined by

Ryzft, t + 1) = E[ZHOZ{t + 1)) i#]) (6.6-8)
and
Copfts ¢ + 1) = E[{2(1) — ELZ(01}*{Z4t + ©) - E[Z{e+ 0]}  i#j
(6.6-9)
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respectively. 1f the two processes are at least jointly wide-sense stationary,

btain
o (6.6-10)

(0.6-11)

Ryzftot + 1) = Ry [0) i#j
Cpaft t + 1) = Cpyl0) iAJ

Z(1) and Z 1) are said to be uncorrelated processes il Cyp (1,1 + 1) = 0,i#)
! J N — . .
They are called orthogonal processes if Ryzft, t+ 1) = 0,i#J.

Example 6.6-1 A complex random process V(1) is comprised of a sum of N
complex signals:

N .

V(l) - Z A"e}wnl-fje,

na )
Here wy/2n is the (constant) frequency of each signa!. A, s a ru'ndom v;nrlfl‘talf:
representing the random amplitude of the nth signal. Similarly, @, 1? a
random variable representing a random phase angle. ‘Wc assume all the V‘d(l;-
ables A and ©,, for n =1, 2, ..., N, are statistically mdcpcnd'cn( and l]w R
are unil:‘ormly distributed on (0, 2r). We find the autocorrelation function of
146)

From (6.6-3):

Ryt t + 1) = E[V*O)V(t + )]

N N
- - b Jwgt ¥ JBm
E[ZA,.c Jaot=J00 5 4, ot thoor ]

LLE m=1

i f) ¢ E[A, A, e/ O] = Ryp(1)

nel mel

i

From statistical independence:
N N
RVV(t) = e}m“. z Z E[AnAm]E[cxp {j(em - en)}]
a=| m=}

However,

Efexp {/(®, — ©))1 = E[cos (©,, — ©,)] +jE[sin (©,, — ©,)]

_ J‘zu J‘u ' [cos (0,, = 0,) + j sin (0,, — 0,)] d0, d0,,
b Jo (@m i

)2
0 m#n
R m=n
SO N —
Ryy(T) = L'Imo' Z An
nat .3!
i
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PROBLEMS

6-1 A random cxperiment consists of sclecting a point on some city street that
has two-way automobile traffic. Define and classify a random process for this
experiment that is related to traffic flow.
6-2 A 10-meter section of a busy downtown sidewalk is actually the platform ofa
scale that produces a voltage proportional to the total weight of people on the
scale al any time.

{a) Sketch a typical sample function for this process.

(h) Whatis the underlying random experiment for the process?

(¢) Classify the process.

*6-3 An cxpcriment consists of measuring the weight W of some person cach 10
minutes. The person is randomly male or female (which is not known though)
with equal probability. A two-level discrete random process X(¢) is gencrated
where

X{)= £10
The level — 10 is generated in the period following 2 measurement if the mea-
sured weight does not exceed W, (some constant). Level + 10 is generated if

weight exceeds W, . Let the weight of men in kg be a random variable having the
gaussian density

fiwlw]male) = 1 exp [—(w — 770}/ 1.3Y4]

Jm113

Similarly, for women

1
(o ale) = —==— cxp —(w — 54.4)%/2(6.8)
./ll(v‘rcm‘ ) \/2——7!68 p [ YA |

(@) Find 1%, so that P{W > W, | malc} is cqual to P{W < W, | female}.

{h) 1 the levels £ 10 arc intcrpreted as « decisions ” about whether the weight
measurcment of a person corresponds to a male or female, give n physical signifi-
cance to their generation.

(c) Sketch a possible sample function.

6-4 The l}vo-!cvcl semirandom binary process is defincd by

: X()=Aor —A (n-1)T <t<nT

where the levels 4 and ~ A oceur with equal probability, T is a positive constant,
andn=0,+1, £2,....

(a) Sketeha typical sample function.

(b) Classily the process.

(¢) s the process deterministic?
6-5 Sample functions in a discrete random process arc constants; that is

X(1) = C = constant
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where C is a discrete random variable having possible values ¢, = 1. ¢, = 2, and
¢y = 3 occurring with probabilities 0.6, 0.3, and 0.1 respectively.

(a) Is X(1) deterministic?

(h) Find the first-order density function of X(f) at any time .
6-6 Utilize (6.2-13) to prove (6.2-16).
*6-7 A random process X(t) has periodic sample functions as shown in Figure
16-7 whare B, T, and 4t < T are constants but ¢ is a random variable uniformly
distributed on the interval (0, T).

(a) Find the first-order distribution function of X{1).

(h) Find the first-order density function.

(¢) Find E[X(1)], E[X(1)]. and 0%.

X

0 81y 3 e+ 1y e+ T t

Figure P6-7

6.8 Work Problem 6-7 for the waveform of Figure P6-8. Assume 2to < T.

x(n
4—!,—-—)—1
A
[ ] 'YX}
| L
0 [ ‘+’9 e+ T [

Figure 1'6-8

+6.9 Work Problem 6-7 for the waveform of Figure P6-9. Assume 415 < T.

xtn

Half-cycle

t=1l 41

Figure 1’6-9
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6-10 Given the random process
X(1) = A sin (wyt + ©)

where A and w, are constants and © is a random variable uniformly distributed
on the interval (= x, n). Define a new random process Y(f) = X(:).

(¢) Find the autocorrelation function of Y(1).

{(h) Find the cross-correlation function of X(1) and Y(1).

(¢) Are X(t) and Y(1) wide-sense stationary?

(d) Are X(1) and Y(1) jointly wide-sense stationary?
6-11 A random process is defined by

Y(t) = X(1) cos (wqot + O)

where X(1) is a wide-sense stationary random process that amplitude-modulates a
carricr of constant angular frequency w, with a random phase ® independent of
X(1) und uniformly distributed on (-, n). :

{a) Find E[Y(1)].

() Find the autocorrelation function of Y(1).

(¢} Is Y(r) wide-sense stationary?

6-12 Given the random process

X(1) = A cos (wy 1) + B sin (wy 1)

where w, is a constant, and 4 and B are uncorrelated zero-meun random vari-
ables having different density functions but the same variances o2, Show that X(/)
is wide-sense stationary but not strictly stationary.

6-13 If X(t) is a stalionary random process having a mean value E[X(1)] =3 and
autocorrelation function Ryy(t) = 9 + 2¢~M, find:

(¢) the mean value and

{b) the variance of the random variable

: 2
Y= J X(t) de

(Mint: Assume expectation and integration operations are interchangeable.)
6-14 Define a random process by

X(t) = A cos (n1)

where 4 is a gaussian random variable with zero mean and variance g3,
(a} Find the density functions of X(0) and X(1)
(b) Is X(1) stationary in any sense?

6-15 For the random process of Problem 6-4, calculate:

(a) the mean value E[X()] (h) Ryx(ty = 05T, 1, =077} (o) Ryylt, =
027, 1, = 1.27).

6-16 A random process consists of three sample functions X(¢, s,) = 2, X(1, 5,) =

2 cos (1), and X(t, 5,) = 3 sin (1), each oceurring with equal probability, Is the
process stationary in any sense?
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6-17 Statistically independent, zero-mean, random processes X(t) and Y1) have
autocorrelation functions
Ryx(1) = e

and
Ryy(t) = cos (2r1)
respectively. ' .
l (@) Find the autocorrelation function of the sum W (1) = X(1) +’Y(l). )

(b) Find the autocorrelation function of the difference Wit) = ,\(!)_— Y{t).

(¢) Find the cross-correlation function of W(t) and Wz(t?. .
6-18 Definc a random process as X(f) = p(¢ + ¢), where p(r? is any periodic v.vav.c-
form with period T and ¢ is a random variable uniformly distributed on the inter-
val (0, T). Show that

-
E[X(0X(t + )] = :}: L PP + 1) dS = Rx(7)

*6-19 Use the result of Problem 6-18 to ﬁnd_ the autocorrelation fugcuon of

random processes having periodic sample function waveforms p(t) define

(a) by Figure P6-7 with ¢ = 0 and 4t, < T, and

(b) by Figure P6-8 withe =0and 2t, < T. -
6-20 Definc two random processes by X(1) = p + t) :'u‘\d Y(l).='p3$l —g t) wur::1
p,{t) and p,(r) are both periodic waveforms with pcfnod T and ¢ is o ran lom vass-
able uniformly distributed on the interval (0, T). Find an expression for the cro
correlation function E[X()Y(t + 1)].
6-21 Prove:

(a) (6.3-4) and (b} (6.3-5).

- ive arguments to justify (6.3-9). . .

:-z ‘Iil)r lhf random ;J)roccss having the autocorrelation function shown in
Figure PG6-23, find:

(@) E(X(1)] (b) E[X0)] and (¢) o},
Ryx(r)
50
- 20 - —
-10 0 10 T

Figure P6-23
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6-24 A random process Y(1) = X(1) — X(r + 1) is defined in terms of a process

X(f) that is at least wide-scnse stationary.
(a) Show that the mean value of Y(1) is O even il X(¢) has a nonzcro medn

value.
(hy Show that
‘711' = 2[Ryx(0) — Ryx(1)]

(¢) 1f Y(0) = X(t} + Xt + 1), find E[Y(1)] and o}. How do these results
compare to those of parts {a) and (b)?
6-25 For two zcro-mean, jointly wide-sense stationary random processes X(1)
and Y(1), it is known that ol = 5and o} = 10, Explain why cach of the lollowing
functions cannot apply to the processes if they have no periodic components.

(@) Ryy{t) = 6u(t) cxp (=31) () Ryx(t) =3 sin (51)
(©) Rty =9(1 + 2c%)7 (d) Ryy(t) = —cos (67) exp (—[tl)

(e} Ryy(t) = 5[‘___Sin}(r3r):‘1 sin “01')]

R =6+4
(f) Ryy(v) [ 10t
6-26 Given (wo random processes X(1) and Y(). Find cxpressions for the auto-
correlation function of W(t) = X(1) + Y(i}il:
(@) X(1) and V(1) are corrclated.
(b) They are uncorrclated.
(¢) They are uncorrelated with zero means.
6-27 Usc (6.3-19) to prove (6.3-17).
6-28 Lel X(1) be a stationary continuous random process that is dilTerentiable.
Denote its time-derivative by X(1). *
{a) Show that E[X(1] = 0.
() Find Ry4(x) in terms of Ry (7).
(¢) Find Ryg(r) in terms of Ryx(1). (Hint: Use the definition of the derivative
. L X+ - X
X() = lim _(__f_r)___(_z
=0
and assume the order of the limit and expectation operalions can be inter-
changed.)
6-29 A gziu&si:m random process has an autocorrelation function

Ryy(1) = 6 cxp (~111/2)
Determine a covariance matrix for the random variables X(1), X(t + 1), X(t +2),
and X(r -F )
6-30 Work Problem 6-29 if
sin (n1)

Ryx(e) = 6 ——
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6-31 An ensemble member of a stationary random, process X() is sampled at N
times t;, i =1,2,..., N. By treating the samples as random variables X, = X(1)),
an estimate or measurement £ of the mean value X = E[X()] of the process is
sometimes formed by averaging the samplcs:

a 1 X
X=’N"Z:IXI

(a) Show that E[X] = X.
(M If the samples arc scparated far enough in time so that the random vari-
ables X, can be considered statistically independent, show that the variance of the

estimale of the process mean is
(o8)* = a}/N

6-32 For the random process and samples defined in Problem 6-31, let an esti-
mate of the variance of the process be defined by

1 N

F=g L= &7
{m1

Show that the mean value of this estimate is

N =1
ok

E(7}) =

6-33 Assume that X(f) of Problem 6-31 is a zero-mean stationary gaussian
process and let
~_1 &2
or=— )X
X N ‘?l i

be an eslimate of the variance o3 of X(t) formed from the samples. Show that the
variance of the estimate is

4
. A~ 20
variance of 0§ = —ﬁ'-‘-

(Hint: Use the facts that E[X?] = o}, E[X*]1 =0, and E[X*] = 30% for a
gaussizn random variable having mean zero.)
6-34 How many samples must be taken in Problem 6-33 if the standard devi-
ation of the estimale of the variance of X(r} is to not exceed 5% of 6}?

*6-35 A complex random process Z(t) = X(1) + jY(0) is defined by jointly station-
ary rcal processes X{t) and Y(¢). Show that

EC1 Z(0)1?] = Rex(0) + Ryy(0)
*6-36 Let X (), Xa(0), Yi(0) and Y,(¢) be real random processes and define
Z,(0 =X, +i%0  Z) = X0 —jYa0)

e ey I LX)
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Find expressions for the cross-correlation function of Z\(t)and Z,(1)if:
(a) All the real processes are correluted. l =
(b) They are uncorrelated.
(¢} They are uncorrelated with zero means.

*6- N, > 0 el liona e
37 Let Z01) be a stationary complex random process with an autocorrelation

function R,,(t). Define the random variable

at+T
W= f Z(t) di

where T > 0 and « are real numbers. Show that

r
ELIW() = J._T('l' = TR (x) dr

ADDITIONAL PROBLEMS

6-(38 For a random process X(¢) it is known that fy(x,, Xy, X35 Uy, by, ty) =
(gcx,r, ;r]z, X3ity + Aty + A 15+ A)_ for any ¢,, t,, ty and A. Indicate which of
! ]o :wmg'slatemcnls are unequivocably true: X(t) is (a) stationary to or-
(er _a( ) sta(xona_ry to order 2, (c) stationary to order 3, {d) strictly stationary
e} wide-sense stationary, (/) not stationary in any sense, and (g) ergodic, ’
:S.-3.9'A rapdom process is defined by X(t) = X, + V¢ where Xo and V are sta-
[l;llcal)lg independent random _variablcs uniformly distributed on i'nlervals
am;,,(,c) (gz]dz:r:g v, .V1], r?specllvcly. Find (a) the mean, (b) the autocorrelation
autocovari: i i i '
0. State the tyos ance functions of ){(1). (d) Is X(1) stationary in any sense? If
* : ' ’
6b-40m(u) Find lhc. first-order density of the random process of Problem 6-39
(b) Plot the density for ¢ = k(Xo, = Xo,)(V; ~ Vi) with k=0, %, 1. and 2-
Assume V; = 3V, in all plots, B .
g—tﬂ Assume a wid?-scnsc sl.alionary proccss‘X(t) has a known mean £ and a
nown au(ocorrcl.auon function Ryy(z). Now suppose the process is observed at
time 1, zfnd we wish to estimate, that is, predict, what the process will be at time
ty + t with © > 0, We assume the estimate has the form
X, +1)= aX(t,) + B
where a and § are constunts.
(@) Find o and f} so that the mean-squared prediction error

o e’=£[{X(l,+r)—X(t, + 1)}%]
is minimum,

(b) Fxnd lhc'mmlmum mean-squared error in terms of Ry (). Develop an
alternative form in terms of the autocovariance function.

6;42 Fmdr the time average and lime autocorrelation function of the random
process o E_xample 6.'2-1. Compare these results with the statistical mean and
autocorrelation found in the example.
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6-43 Assume that an crgodic random process X(1) has an autocorreltion
function

9
Ryylt) = 18 + ~r‘ [1 + 4 cos (127)]

6+

(a) Find | X1.

(b) Docs this process have a periodic component?

(¢) What is the average power in X(1)?
6-d44 Define a random process X(1) as follows: (1) X(1) assumes only pne of two
possible levels 1 or —1 at any time, (2) X(1) switches back and forth between its
two levels randomly with tine, (3) the number of level transitions in any lime
interval 7 is a Poisson random variable, that is, the probability of exactly k trin-
sitions, when (he average rate of transitions is 4, is given by ((AT)/k ] exp (—it),
(4) transitions oceurring in any time interval are statistically independent of tran-
sitions in any other interval, and (5) the levels at the start of any interval are
equally probable. X(1) is usually called the random teleyraph process. 10 is an
example of a discrete random process.

{a) Find the autocorrelation function of the process.

(b) Find probabilities P{X(t) = 1} and P{X(1) = —~1} for any 1.

(c) Whatis E[X(1)]?

(d) Discuss the stationarity ol X(1).
6-45 Work Problem 6-44 assuming the random telegraph signal has fevels 0
and 1.
6-46 8 =6 und Ryy(t, t + 1) = 36 + 25 exp (— | t]) for u random process X{1).
Indicate which of the following statements are true based on what is known with
certainty. X(1) (o) is lirst-order stationary, (b) has total average power of 61 W, (¢}
is ergodic, (d) is wide-sense stationary, (¢) has a periodic component, and () has
an ac power of 36 W.

6-47 A zcro-mean random process X(1) is ergodic, has average power of 24 W,
and has no periodic components. Which of the following can be a valid auto-
correlation function? If onc cannot, state al least one reason why.
(a) 16 + 18 cos (31), (b) 24Sa?(21), () [1 + 37*]7" exp (—61), and (d) 244(t — 7).

6-48 Use the result of Problem 6-18 to find the autocorrelation function of a
random process with periodic sample function waveform p(t) defined by

p() = A cos? 2ni/T)

where A and T > 0 are constants,

6-49 An engincer wanls to measure the mean value of a noise signal that can be
well-modeled as a sample function of a gaussian process. He uscs the sampling
estimator of Problem 6-31. After 100 samples he wishes his cstimate to be within
+0.1 V of the truc mean with probability 0.9606, What is the largest variance the
process can have such that his wishes will be truc?
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6-50 Lct X(1) be the sum of a deterministic signal s(t) and a wide-sense stationary
noise process N(1). Find the mean valuc, and autocorrclation and autocovariance
functions of X(). Discuss the stationarity of X(1).

6-51 Random processes X(f) and Y{1) are defined by
X(t) = A cos (wet + ©)
Y(1) = B cos (wet + ©)

where A, B, and w, arc constants while © is a random variable uniform on
(0, 2). By the procedures of Example 6.2-1 it is easy to find that X(f) and Y(1) arc
zero-mean, wide-sense stationary with autocorrelation functions

Ryy(1) = (A%/2) cos (mq 1)
Ryy(t) = (83%/2) cos (wy 1)

(a) Find the cross-correlation funclion Ryy{t, -+ 1) and show that X(1) and
Y(1) arc jointly wide-sense slationary.

(b) Solve (6.4-2) and show that the response of the system of Figurc 6.4-1
cquals the true cross-corrclation function plus an crror term ¢(T) that decrcascs
as T increascs.

(c) Sketch |[e(T)] versus T to show its behavior, How large must 7' be to make
Le(T)} less than 1% of the largest valuc the correct cross-corrclation function can
have?

6-52 Consider random processcs
X(t) = A cos (wot + ©)
Y(t) = B cos (w ¢t + D)

where A. B, w,, and m, are constants, while © and @ are statistically independent
random variables uniform on (0, 2n).

(@) Show that X(1) and Y(1) are jointly wide-sense stationary.

(h) If © = & show that X(1) and Y{1) are not joinlly widec-sensc stationary
unless w, = Wo.

6-53 A zcro-mean gaussian random process has an autocorrelation function

‘ Ryxle ={‘3U ~(le1/60  1tls6

0 elsewhere

Find the covariance function nccessary 10 specify the joint density- of random
variables defined at times ;= 2(i — Di=12..3 Give the covariance matrix
for the X; = X{f)).

6-54 1f the gaussian process of Problem 6-53 is shifted to have a constant mean

§ = -2 but all elsc is unchanged, discuss how the autocorrelation function and

covariance matrix change. What is the cffect on the joint density of the five
random variables?
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*6-55 Extend Example 6.6-1 to allow the sum of complex-amplitude unequal-
frequency phasors. Let Z;, i=1,2,..., Nbe N complex zero-mean, uncorrelated
random variables with variances ¢3,. Form a random process

N
Z(t) = E Z, oot

i=1

where w, are the frequencies of the phasors.

(a) Show that E[Z(t)] = 0.

(b) Derive the autocorrelation function and show that Z(t) is wide-sense
stationary.

*6-56 A complex random process is defined by
Z(1) = exp (jQU)

where Q is a zero-mean random variable uniformly distributed on the interval
from wy — Aw to we + Aw, where wg and Aw are positive constants. Find:

(a) the mcan value, and (b) the autocorrelation function of Z(t).

(¢) Is Z(t) wide-sense stationary?

*6-57 Work Problem 6-56 except assume the process
Z(t) = &/ 4 e” ¥ = 2 cos ()

* ‘e . .
6-58 Let ).((t) and Y(t) be statistically independent wide-sense stationary real pro-
cesses having the same autocorrelation function R(r). Define the complex process

Z(t) = X(t) cos (we t) + jY(t) sin (we )

w!lcrc w, is a positive constant. Find the autocorrelation function of Z(t). Is Z(t)
wide-sense stationary?

.
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