Enhancing Secrecy Rates and Resource Allocation in Single-User & Multi-User Fading Wiretap Channels

(Thesis Colloquium)

Shahid Mehraj Shah *

*Dept. of ECE, Indian Institute of Science, Bangalore

June 22nd 2015
Outline

1. Introduction
2. Single user Wiretap Channel: Alternate Secrecy Notion
3. Single User Wiretap Channel: Time Slotted System
4. Fading MAC: Resource Allocation
5. Fading MAC: Game Theoretic Formulation
6. Fading MAC: Time Slotted System
7. Conclusions and Future Work
Outline

1. Introduction
2. Single user Wiretap Channel: Alternate Secrecy Notion
3. Single User Wiretap Channel: Time Slotted System
4. Fading MAC: Resource Allocation
5. Fading MAC: Game Theoretic Formulation
6. Fading MAC: Time Slotted System
7. Conclusions and Future Work
How it began

- Conventional security measure taken at higher layer
- Cryptographic techniques depend on finiteness of computational power while Information theoretic security (ITS) promises provable security
- Wyner in 1975 Proposed a wiretap coding scheme for degraded Wiretap Channel\(^1\)
- Security achieved at the cost of \textit{rate loss}
- Wyner’s result extended in several ways: BCC, MAC, IC, RC \(^2\)
- Cost paid in each channel model is: \textit{Rate Loss}
- In most of the work in ITS, Eve’s complete channel knowledge is assumed
- Because of passive nature of Eve, this assumption not practical

Motivation

- We try to address these two issues in our work.
- To mitigate rate loss we propose alternate measure of secrecy and novel coding scheme.
- We use optimization techniques to allocate power with No CSI of Eve in MAC.
- We also use Game theoretic learning to allocate resources with less information about Eve’s channel state.
Outline

1. Introduction
2. Single user Wiretap Channel: Alternate Secrecy Notion
3. Single User Wiretap Channel: Time Slotted System
4. Fading MAC: Resource Allocation
5. Fading MAC: Game Theoretic Formulation
6. Fading MAC: Time Slotted System
7. Conclusions and Future Work
Introduction

Single user Wiretap Channel: Alternate Secrecy Notion

Single User Wiretap Channel: Time Slotted System

Fading MAC: Resource Allocation

Fading MAC: Game Theoretic Formulation

Fading MAC: Time Slotted System

Conclusions and Future Work

Channel Model: AWGN Wiretap Channel

- Message $W \in \{1, \ldots, 2^{nR}\}$ to be transmitted securely & is encoded to $X^n = \{X_1, \ldots, X_n\}$.
- Bob receives $Y_i = X_i + N_{1i}$, $N_{1i} \sim \mathcal{N}(0, \sigma_1^2)$, iid, Eve receives $Z_i = X_i + N_{2i}$, $N_{2i} \sim \mathcal{N}(0, \sigma_2^2)$, iid, and $\sigma_1^2 < \sigma_2^2$
- Let $C_1 = 0.5 \log(1 + P/\sigma_1^2)$ and $C_2 = 0.5 \log(1 + P/\sigma_2^2)$
- Equivocation Based definition:

 - (R, R_e) is achievable if $\exists \mathcal{W}_n$ with $|\mathcal{W}_n| = 2^{nR}$ and encoder - decoder pairs (f_n, g_n) such that $P_e^n \to 0$, and the equivocation rate $\lim_{n \to \infty} \frac{1}{n} H(W|Z^n) \geq R_e$

- Code design to satisfy equivocation rate is difficult. ²
- To confuse Eve random messages are sent, which decreases the rate.

²Klinc, D., Ha, J., McLaughlin, S. W., Barros, J., & Kwak, B. J. “LDPC codes for the Gaussian wiretap channel.” *IEEE Trans. on Info. Forensics and Sec.*, (2011)

¹Part of this work has been presented in IEEE ICCS 2012, Singapore
New Notion

- Natural Definition of secrecy: Probability of error for receiver → 0 and that for eavesdropper → 1.
- **Strong converse**: $R > C$, probability of error of decoding → 1.
- Will use strong converse to formulate coding schemes.
- Eve is confused with the messages which are **useful** for Intended receiver, and Eve getting no message, i.e. no **common** information.
- Each message for Eve confused with **same number** of codewords as in Equivocation based approach.
New Notion: Achieving Shannon Capacity

Proposition

All rates $R < C_1$ are achievable such that $P_{e}^{n}(B) \rightarrow 0$, $P_{e}^{n}(E) \rightarrow 1$ as $n \rightarrow \infty$.

- where $P_{e}^{n}(B) =$ Probability of decoding error at Bob, $P_{e}^{n}(E) =$ Probability of decoding error at Eve

Coding Scheme

- Region $C_2 < R < C_1$: generate n length iid Gaussian codewords with $X \sim \mathcal{N}(0, P)$
- $R < C_1$ ensures $P_{e}^{n}(B) \rightarrow 0$
- $R > C_2$, by strong converse, $P_{e}^{n}(E) \rightarrow 1$.
- To achieve rate $R < C_2$, select Gaussian P_X with power $< P$ such that $I(X; Y) > R > I(X; Z)$
Performance (via AEP decoder at Eve)

- N be the number of codewords other than that of message 1 that are jointiy typical with Z^n
- $E[N] = (2^{nR} - 1)2^{-nI(X;Z)}$ and $P_e^n(E) \approx 2^{n(R-I(X;Z))}$
- $P_e^n(E) \leq 2^{-n(C_1-C_2)}$ possible, maximum decay rate for equivocation based secrecy also.
- Higher R means more confusion for Eve.
- ML Decoding at Eve: If $x_1(1), \ldots, x_n(1)$ is transmitted, decode as message \hat{m} if
 \[\hat{m} = \arg \min_{\hat{m}} \sum_{k=1}^{n} (Z_k - x_k(\hat{m}))^2. \]
 (1)
- Eve will confuse with $2^{n(R-C_2)}$ codewords. Max confusion as in AEP decoder.
- AEP and ML decoder best for Eve.
New Notion: Relation with Equivocation

- When $C_2 < R < C_1$, $P_e^n(B) \to 0$, and $P_e^n(E) \to 1$. Fano’s Inequality gives: For Bob

\[
\frac{1}{n} H(W | Y^n) \leq \frac{H(P_e^n(B))}{n} + P_e^n(B)R
\]

(2)

- Lower bound: For Eve

\[
H(W | Z^n) \geq \phi^*(\pi(W | Z^n))
\]

(3)

where ϕ^* is a piecewise linear, continuous, non-decreasing, convex function.\(^2\) $\pi(W | Z^n)$ is the average probability of error for the MAP decoder at Eve.

- From Arimoto’s lower bound

\[
\pi(W | Z^n) \geq 1 - e^{-n(E_0(\rho,\rho) - \rho R)}, \quad 0 \geq \rho \geq -1.
\]

(4)

\(^2\)M. Feder and N. Merhav, “Relations Between Entropy and Error Probability,”

Numerical Example

- For $\sigma_1^2 = 0.1$, $\sigma_2^2 = 1.5$, and $P = 20\, dB$, $P_e^n(B)$ and $P_e^n(E)$ are plotted for $n = 50, 100$ and 200.
- For $P_e^n(B)$ Gallager’s random coding bound and for $P_e^n(E)$ Arimoto’s lower bound are plotted.

![Probability of Error vs SNR](image)

- Bob N=50, Eve N=50
- Bob N=100, Eve N=100
- Bob N=200, Eve N=200

For $P=20\, dB$, $\sigma_1^2=0.1$, $\sigma_2^2=1.5$, $R=2.5$
Fading Channel

For the fading channel

\[Y_i = h_i X_i + N_{1i}, \quad Z_i = g_i X_i + N_{2i}, \]

(5)

The capacity is ([gopala2008]):

\[C_s = \int_0^\infty \int_r^\infty \left[\log(1 + qP^*(q, r)) - \log(1 + rP^*(q, r)) \right] f(q)f(r) dq dr \]

(6)

where \(q(i) = |h(i)|^2 \) and \(r(i) = |g(i)|^2 \)

\[E[P^*(q, r)] = P, \]

Proposition

All rates \(R < C_1 \) are achievable such that \(P_e^n(B) \to 0 \) and \(P_e^n(E) \to 1 \) where

\[C_1 = \sup_{P(q,r)} \int_0^\infty \int_r^\infty \left[\log(1 + qP(q, r)) \right] f(q)f(r) dq dr. \]

(7)
Outline

1. Introduction

2. Single user Wiretap Channel: Alternate Secrecy Notion

3. Single User Wiretap Channel: Time Slotted System

4. Fading MAC: Resource Allocation

5. Fading MAC: Game Theoretic Formulation

6. Fading MAC: Time Slotted System

7. Conclusions and Future Work
Discrete Memoryless Wiretap Channel

- Yamamoto in 1997 used Wiretap coding and secret key to enhance secrecy rate in degraded Wiretap channel. ¹
- E. Ardestanizadeh et. al. (2008) used feedback from Bob to Alice to enhance secrecy rate ³.
- In this work we use previous secret messages as secret key to enhance the secrecy rate.

¹Part of this work has been presented in IEEE ICC 2013 workshop on Physical Layer Security, Hungary.
Channel Model

- $W \in \mathcal{W} = \{1, 2, \ldots, 2^{nR_s}\}$ is message set, where
 \[
 R_s = \max_{p(x)} [I(X; Y) - I(X; Z)].
 \] (8)

- $\{W_m, m \geq 1\}$ is an independent sequence of messages to be transmitted.

- At time i: X_i the channel input, Y_i Channel O/P at Bob & Z_i Channel O/P at Eve.

- A mini-slot consists of n channel uses.

- Each slot, upto λ, consists of 2 mini-slots where
 \[
 \lambda \triangleq \left\lfloor \frac{C}{R_s} \right\rfloor,
 \] (9)

- After λ slots each slot has only one mini-slot.
Channel Model

- $\overline{W_k}$ to be transmitted in slot k consists of one or more messages W_m.
- Codeword for $\overline{W_k}$: $X_{k1}^{2n} = \{X_{k1}, \ldots, X_{2kn}\}$ or X_k^n depending on the length of the slot.
- Transmitter uses the secret message $\overline{W_k}$ transmitted in slot k as the key for transmitting the message in slot $k + 1$.
Encoder/Decoder

\[R_s \]

0
Wiretap Coding only

1
Wiretap Coding

2
Secret Key

3

\[k > M \]

\[k + 1 \]

\[R_s \]

\[C \]
Encoder: To transmit \overline{W}_k in slot k, encoder has two parts

$$f_s : \mathcal{W} \rightarrow \mathcal{X}^n, f_d : \mathcal{W} \times \mathcal{K} \rightarrow \mathcal{X}^n,$$ (10)

where $\mathcal{X} \in \mathcal{X}$, and \mathcal{K} set of secret keys generated and f_s is the Wiretap encoder.

Deterministic Encoder f_d: Encode XOR of message and binary version of the key optimal usual channel encoder.

Slot 1: Message encoded using the wiretap code only.

Slot k: $(1 < k \leq \lambda)$, both f_s and f_d used simultaneously.
Encoder/ Decoder

- Slot 1: Decoder function at Bob is
 \[\phi_1 : \mathcal{Y}^{2n} \to \mathcal{W} \]
 \[(11) \]

- Slot \(k \): \(k > 1 \), decoder is
 \[\phi_i : \mathcal{Y}^n \times \mathcal{K} \to \mathcal{W}^j \]
 \[(12) \]
 for time slot \(i \), with \(j = \min(i, \frac{C}{R_s}) \).

- Probability of error:
 \[P_e^{(n)} = \Pr\{\hat{W} \neq W\} \]
 \[(13) \]
 where \(\hat{W} \) is the decoded message.
Achievable Rate

- **Leakage rate** is $R_L^n = \frac{1}{n} I(\overline{W}; Z^{2n})$.

Definition

A Leakage-rate pair (R_L, R) is said to be achievable if there exists a sequence of $(2^{nR}, n)$-codes such that $P_e^{(n)} \to 0$ and $\limsup_{n \to \infty} R_L^n \leq R_L$ as $n \to \infty$.

Theorem

Any rate $< C$ is achievable for all slots $k \geq \lambda$.

- **Slot 1**: Alice picks message W_1 from \mathcal{W} and transmits this message using $(n, 2^{nR_s})$-Code.
- **Slot 2**: *Using the previous message*, $\overline{W}_1 = W_1$, as a key (with key rate $R_k = R_s$) Alice transmits message $\overline{W}_2 = (W_{21}, W_{22})$, where $W_{21} = W_2$, $W_{22} = W_3$ are taken from the iid sequence $\{W_k, k \geq 1\}$.
Coding Scheme Contd.

- 1st message W_{21} is encoded to X_{21}^n using wiretap code.
- 2nd message W_{22} is first encrypted to produce the cipher using one-time pad with the previous message as secret key, i.e.,
$$\tilde{W}_{22} = W_{22} \oplus W_1$$

- We encode this encrypted message to X_{22}^n using a point-to-point optimal channel code.

- We continue this till $\lambda - 1$ slots. In slot $\lambda - 1$, we transmit message $(W_{\lambda-1,1}, W_{\lambda-1,2}, \ldots, W_{\lambda-1,\lambda-1})$.

- Total rate:
$$\frac{1}{2} (R_s + (\lambda - 1)R_s) = \frac{1}{2} (R_s + C). \quad (14)$$

- Bob (Decoder): In slot k, (for $1 < k < \lambda$) Y_{k1}^n is decoded via usual wiretap decoding while Y_{k2}^n is decoded first by the channel decoder and then XORed with \tilde{W}_{k-1}.
Error Analysis

- $\epsilon_n =$ message error probability for the wiretap encoder and $\delta_n =$ message error probability due to the channel encoder for W_k
- Slot k: $(1 < k < \lambda - 1)$, $P(\overline{W}_k \neq \hat{W}_k) \leq Pr(\text{Error in decoding } W_{k1}) + Pr(\text{Error in decoding } \overline{W}_{k2}) + Pr(\text{Error in decoding } \overline{W}_{k-1}) \leq k\epsilon_n + (k - 1)\delta_n$.
- Error upper bound increases with k
- Restarting (as in slot 1) after some k slots ($> \lambda$) will ensure that $P(\overline{W}_k \neq \hat{W}_k) \to 0$ as $n \to \infty$.
Leakage Rate Analysis

- We show
 \[\frac{1}{n} I(W_k; Z_1^n, Z_2^{2n}, \ldots, Z_k^{2n}) \to 0 \]
 as \(n \to \infty \)

- Slot 1: Wire-tap coding is used, hence \(\frac{1}{n} I(W_1; Z_1^n) \to 0 \), as \(n \to \infty \).

- Slot 2:
 \[\frac{1}{n} I(W_1; Z_1^n, Z_2^{2n}) \to 0 \]

- We use mathematical induction to show that
 \(\frac{1}{n} I(W_m; Z_1^n, Z_2^{2n}, \ldots, Z_{k+1}^{2n}) \to 0 \) for all \(m \leq k + 1, k \geq 1 \).
Strong Secrecy

- Same secrecy rate can be achieved even with *strong secrecy*.
- Use *Resolvability based codes*\(^4\) in the first slot.
- In the subsequent blocks we use both the stochastic encoder and the deterministic encoder.

We now consider the following model

\[P_{Y,Z|X}(\cdot|\cdot) \]

Figure: Wiretap Channel with secret key buffer
In slot k message \overline{W}_k is stored in key buffer.

- B_k=# of bits in buffer in beginning of slot k,
- \overline{R}_k=# of bits used as secret key in slot k, then

$$B_{k+1} = B_k + |\overline{W}_k| - \overline{R}_k,$$

where $|\overline{W}_k|$=# of bits in \overline{W}_k. (17)

In slot k, $(k-1)R_s n$ bits from buffer removed, $kR_s n$ bits added.

- Message $\overline{W}_k = (\overline{W}_{k,1}, \overline{W}_{k,2})$ transmitter s.t. $\overline{W}_{k,1}$ via wiretap coding, $\overline{W}_{k,2}$ via secret key.

- Key buffer used as a FIFO queue, also $B_k \rightarrow \infty$ as $k \rightarrow \infty$.

Aim is to make secrecy criterion stronger:

\[
\frac{1}{n} \log (\bar{W}_k, \ldots, \bar{W}_{k-N_1}; \bar{Z}_1, \ldots, \bar{Z}_k) \to 0 \text{ as } n \to \infty.
\] (18)

for some \(k > N_1 \), \(N_1 \) is arbitrarily large integer.

We now have the following result

Theorem

The secrecy capacity of our coding-decoding scheme is \(C \) and it satisfies (18) for any \(N_1 \geq 0 \), for all \(k \) large enough.

We use the oldest key bits in buffer (not more than \(MC \) bits), after \(k \geq N_2 \) we use key bits from \(\bar{W}_1, \bar{W}_2, \ldots, \bar{W}_{k-N_1-1} \) for messages \(\bar{W}_k, \bar{W}_{k-1}, \ldots, \bar{W}_{k-N_1} \).

can extend to strong secrecy by using resolvability based coding.
AWGN Slow Fading Wiretap Channel

- We consider Fading channel

\[Y_i = \bar{H} X_i + N_{1i}, \quad Z_i = \bar{G} X_i + N_{2i}, \]

(19)

- \(X_i \) channel i/p, \(N_{ki} \sim \mathcal{N}(0, \sigma_k^2), \) \(k = 1, 2 \) and \(H = |\bar{H}|^2, \quad G = |\bar{G}|^2. \)
- We define \(C(P(H, G)) = \frac{1}{2} \log \left(1 + \frac{HP(H, G)}{\sigma^2_1}\right), \quad C_e(P(H, G)) = \frac{1}{2} \log \left(1 + \frac{GP(H, G)}{\sigma^2_2}\right), \)
- Now we have following result

Theorem

The secrecy rate

\[C_s = E_H [C(P(H))] \]

is achievable if \(Pr(H_k > G_k) > 0, \) where \(P(H) = P(H, G) \) is the water-filling power policy for Alice → Bob channel.
Fading Wiretap Channel: No CSI of Eve

- Here we assume the coherence time of \((H_k, G_k)\) is much smaller than the duration \(n\) of a minislot.
- We use the coding-decoding scheme developed earlier in first minislot with secrecy rate \(R_s\), where
 \[
 R_s = \frac{1}{2} \mathbb{E}_{H,G} \left[C(P(H, G)) - C_e(P(H, G)) \right].
 \]
- We have the following proposition

Proposition

Secrecy capacity equal to the main channel capacity without CSI of Eve at the transmitter

\[
C = \frac{1}{2} \mathbb{E}_H \left[\log \left(1 + \frac{HP(H)}{\sigma_1^2} \right) \right]
\]

is achievable subject to power constraint \(\mathbb{E}_H [P(H)] \leq \bar{P}\), where \(P(H)\) is the waterfilling policy.
Multiple Access Channel with Eve

- Gaussian MAC with eavesdropper studied by Yener and Tekin (IEEE trans 2008)
- Co-operative jamming improves secrecy sum-rate
- Fading MAC with full CSI of eavesdropper studied by Yener and Tekin
- In general, Secrecy Capacity region for MAC not known.

Part of this work has been presented in IEEE SPCOM 2012, Bangalore, India
Multiple Access Channel with Eve

- Security if measured by the equivocation rate for each user
 - $R_{1e}^{(n)} = \frac{1}{n} H(W_1|Z^n)$
 - $R_{2e}^{(n)} = \frac{1}{n} H(W_2|Z^n)$
 - $R_{1e}^{(n)} + R_{2e}^{(n)} = \frac{1}{n} H(W_1W_2|Z^n)$
- Reliability: $P_{e1}^{(n)} = Pr\{\tilde{W}_1 \neq W_1\}$, $P_{e2}^{(n)} = Pr\{\tilde{W}_1 \neq W_1\}$
- A rate-equivocation pair $(R_1, R_2, R_{1e}, R_{2e})$ is achievable if \exists a sequence of message sets \mathcal{W}_{1n} and \mathcal{W}_{2n} and encoder-decoder pairs (f_{1n}, f_{2n}, g_n) s.t. $P_{e}^{(n)} \to 0$ as $n \to \infty$ and equivocation rates satisfy $R_{1e} \leq \liminf_{n \to \infty} R_{1e}^{(n)}$, $R_{2e} \leq \liminf_{n \to \infty} R_{2e}^{(n)}$.
The best known rate region for DM-MAC is as follows

\[R_1 \leq [I(U_1; Y | U_2) - I(U_1; Z)]^+ \] (22)

\[R_2 \leq [I(U_2; Y | U_1) - I(U_2; Z)]^+ \] (23)

\[R_1 + R_2 \leq [I(U_1, U_2; Y) - I(U_1, U_2; Z)]^+ \] (24)

where

\[p(x_1, x_2, u_1, u_2, y, z) = p(u_1)p(x_1 | u_1)p(u_2)p(x_2 | u_2)p(y, z | x_1, x_2) \]

The rate region for Gaussian MAC and fading MAC can be obtained from this rate region.
Fading MAC: Secrecy rate region

- Rate region for fading MAC is as follows (Yener and Tekin)

\[
R_1 \leq E_{h,g} \left\{ \log \left(\frac{1 + h_1 P_1(h, g)}{1 + g_1 P_1(h, g) + g_2 P_2(h, g)} \right)^+ \right\},
\]

\[
R_2 \leq E_{h,g} \left\{ \log \left(\frac{1 + g_1 P_1(h, g)}{1 + g_1 P_1(h, g) + g_2 P_2(h, g)} \right)^+ \right\},
\]

\[
R_1 + R_2 \leq E_{h,g} \left\{ \log \left(\frac{1 + h_1 P_1(h, g) + h_2 P_2(h, g)}{1 + g_1 P_1(h, g) + g_2 P_2(h, g)} \right)^+ \right\},
\]

- \(E[P_i(h, g)] \leq \bar{P}_i, i = 1, 2 \). Gaussian signalling is used.
Fading MAC without CSI of eve

- In passive attack of Eavesdropper, CSI cannot be estimated.
- In single user wiretap channel, H.E Elgamal (IEEE trans 2008) reports secrecy capacity with optimal power control with main channel CSI only.
- Mathew Bloch et al. (IEEE trans 2008) studied outage analysis of single user slow fading channel with imperfect CSI of eve.
- We study fading MAC which achieve secrecy sum rate without knowing CSI of eve.
Fading MAC without CSI of eve: Optimal power allocation

\[\phi_{x_1, x_2}^s = 1 + s_1 x_1 + s_2 x_2 \] where \(s \) is the channel state (\(h \) or \(g \)) and \(x_k \) is the power used.

Theorem

For a given power control policy \(\{P_k(h)\}, \ k = 1, 2 \), the following secrecy sum-rate

\[
E_{h,g} \left\{ \left[\log \left(\frac{\phi_{P_1, P_2}^h + \phi_{Q_1, Q_2}^h - 1}{\phi_{P_1, P_2}^g + \phi_{Q_1, Q_2}^g - 1} \right) \right] \right\}^+ \]

(25)

is achievable, subject to power constraint \(E_{h,g}[P_k(h)] \leq \bar{P}_k, \ k = 1, 2 \).

- Optimal policy is not available in closed form. Can be computed numerically.
Fading MAC without CSI of eve: Optimal power control with Cooperative Jamming

- $\{P_k(h)\}, \ k = 1, 2$, policy when users transmit and $\{Q_k(h)\}$, when users jam
- Cooperative Jamming substantially improves secrecy sum-rate.
Without CSI of Eve: ON/OFF power control

- ON/OFF power control is a simple threshold based scheme as follows:
 - $h_1 > \tau_1$, $h_2 > \tau_2$: Both transmit;
 - $h_i > \tau_i$, $h_j < \tau_j$, $j \neq i$: User-i transmits;
 - $h_1 < \tau_1$, $h_2 < \tau_2$: No user transmits.

- Optimize the secrecy sum-rate over τ_1, τ_2

- We also employ co-operative jamming over ON/OFF scheme
Fading MAC Without CSI of Eve: Simulation

![Graph showing Secrecy Sum-Rate vs. SNR for different scenarios.](image-url)
Outline

1. Introduction

2. Single user Wiretap Channel: Alternate Secrecy Notion

3. Single User Wiretap Channel: Time Slotted System

4. Fading MAC: Resource Allocation

5. Fading MAC: Game Theoretic Formulation

6. Fading MAC: Time Slotted System

7. Conclusions and Future Work
Fading MAC without security constraint

- Power allocation in Fading MAC well known
- Tse & Hanly assumes Global CSI available at Tx
- They use Polymatroid theory
- H El Gamal et al use Game theory for distributed power control
- They also assume Global CSI
- Altman et al assume partial CSI, use Bayesian Game theory
We consider K-user fading, discrete time MAC

$$Y(t) = \sum_{i=1}^{K} H_i(t)X_i(t) + \eta(t), \quad (26)$$

- $X_i(t)$ channel i/p, $\eta(t)$ is WGN $\sim \mathcal{N}(0, \sigma^2)$
- Fading process $H_i(t) \in \mathcal{H}_i \triangleq \{h^{(1)}_i, \ldots, h^{(M)}_i\}$ for user i with pmf $\{\rho^{(1)}_i, \ldots, \rho^{(M)}_i\}$
- User i transmits at fixed rate r_i
- Receiver uses successive decoding in following order
- Arranges users in increasing order of channel gains
- Let π be permutation on K s.t. $h_{\pi(1)} \geq h_{\pi(2)} \geq \ldots, fh_{\pi(K)}$
- Receiver sends ACK to user $\pi(i)$ if

$$r_{\pi(i)} \leq \frac{1}{2} \log \left(1 + \frac{h_{\pi(i)} P_{\pi(i)}(h_{\pi(i)})}{\sigma^2 + \sum_{j=i+1}^{K} h_{\pi(j)} P_{\pi(j)}(h_{\pi(j)})}\right)$$ \hspace{1cm} (27)$$

$$\sum_{j=i+1}^{K} h_{\pi(j)} P_{\pi(j)}(h_{\pi(j)})$$ \hspace{1cm} (28)$$
- Reward of user i in time slot t

$$\omega_i^{(t)} \left(a_i^{(t)}, h_i(t) \right) = \begin{cases} 1, & \text{If user } i \text{ receives ACK} \\ 0, & \text{else} \end{cases}$$

- Average utility is

$$\nu_i (P_i, P_{-i}) \stackrel{\Delta}{=} \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \omega_i^{(t)} (P_i, H_i(t)) = E \left[\omega_i^{(t)} (P_i, H_i) \right],$$

(29)

- By WLLN Probability of successful transmission $= \nu_i (P_i, P_{-i})$.
Goal of each user

\[
\max_{a_i} \nu_i (P_i, P_{-i}) \quad \text{(30)}
\]

subject to \(a_i \in \mathcal{P}_i\) \quad \text{(31)}

This is a stochastic game \(\mathcal{G} = \langle \mathcal{K}, \mathcal{P}_i, \{\nu_i\} \rangle\).

We would like to find \(\epsilon\)-Coarse Correlated Equilibrium (CCE), defined as

Definition

If a distribution \(\psi\) on \(\mathcal{P}\) satisfy the following inequality

\[
E_{a \sim \psi} \left[C_{\pi(i)}(a) \right] \leq E_{a \sim \psi} \left[C_{\pi(i)}(\hat{a}_{\pi(i)}, a_{-\pi(i)}) \right] + \epsilon \quad \text{(32)}
\]

then it is called \(\epsilon\)-coarse correlated equilibrium for each user \(\pi(i), i \in \{1, \ldots, K\}\), and every action \(a_{\pi(i)}, \hat{a}_{\pi(i)} \in \mathcal{P}_{\pi(i)}\).
We use Multiplicative Weight No-regret algorithm to obtain CCE

1: $\omega_i^{(t)} \leftarrow 1, \ i = 1, 2, \ldots, K$
2: User i: Choose action w.p. $\Phi_i^{(t)} = \frac{\omega_i^{(t)}(a_i)}{\sum_{\hat{a} \in \mathcal{P}_i} \omega_i^{(t)}(\hat{a})}$
3: Time t: User i receives average utility for choosing a_i
 $\nu_i^{(t)} = \mathbb{E}_{a_{-i} \sim \Phi_{-i}} [C(a_i, a_{-1})]$
4: Update the weight
5: $\omega_i^{(t+1)} = \omega_i^{(t)}(a_i)(1 - \epsilon)^{c_i(a_i)}$
6: Time $t + 1$: Calculate $\psi_t = \prod_{i=1}^{K} \Phi_i^{(t)}$
Pareto Optimal Points

- We first define
 \[\Omega(a) = \sum_{i=1}^{K} \gamma_i \nu_i(a) \]
 (33)

- Goal is to obtain
 \[\max_a \Omega(a) \]
 subject to \(a \in \mathcal{P} \).
 (34)

- The equilibrium obtained is Pareto optimal, defined as

Pareto optimality

An action profile \(a \in \mathcal{P} \) is Pareto optimal if there does not exist another profile \(\tilde{a} \) such that \(\nu_i(\tilde{a}) \geq \nu_i(a) \), \(\forall i \in \mathcal{K} \) and \(\nu_j(\tilde{a}) > \nu_i(a) \) for \(j \neq i \).

- We use distributed algorithm to obtain Pareto points
Distributed Algorithm I

1. \texttt{OUTER_ITER} = 1, User i: choose \(a_i \in \mathcal{P}_i\) uniformly.
2. Use \(a_i\) for \(T\) time slots.
3. Update weight of each user \(i\)
4. \(\hat{\Omega}(a) \leftarrow \sum_{i=1}^{K} \gamma_i \left(\frac{1}{T} \sum_{t=1}^{T} \omega_i^{(t)}(a_i, H_i(t)) \right)\)
5. After \(T\) slots: \texttt{INNER_ITER} = 1, User \(i\) experiments \(w.p.\ \P_{\text{exp}}\)
6. \(w.p.\ \epsilon\) choose \(a_i' \neq a_i, a_i' \in \mathcal{P}_i\)
7. \(w.p.\ 1 - \epsilon\)
8. choose \(a_i' \neq a_i\) s.t. \(h_i\) with high \(\alpha_i\) gets higher power level
9. If \(\alpha_i\) same for all \(h_i\), then higher value of channel state gets higher power level.
10: Call new action \(\hat{a}_i\)
11: User \(i\): use \(\hat{a}_i\) for \(T\) time slots.
Distributed Algorithm II

12: User j: use a_j for T time slots, $j \neq i$.
13: User i: find $\hat{\Omega}(\hat{a}_i, a_{-i})$
14: if $\hat{\Omega}(\hat{a}_i, a_{-i}) > \hat{\Omega}(a_i, a_{-i})$ then
15: $a_i \leftarrow \hat{a}_i$
16: $P_{\text{benchmark}} = \hat{\Omega}(\hat{a}_i, a_{-i})$
17: else
18: Randomly select another action
19: end if
20: $\text{INNER}_\text{ITER} = \text{INNER}_\text{ITER} + 1$, goto step 5 till $\text{INNER}_\text{ITER} = \text{MAX}$
21: $\text{OUTER}_\text{ITER} = \text{OUTER}_\text{ITER} + 1$, goto step 1 till $\text{OUTER}_\text{ITER} = M$
Nash Bargaining Solution

- consider the strategic game $\mathcal{G} = \langle K, P_i, \{\nu_i\} \rangle$ where users cooperate.
- we need to specify *disagreement* outcome
- We define the set of all possible utilities as
 \[V = \{(\nu_1(a), \ldots, \nu_K(a)) : a \in P\} \tag{35} \]
- disagreement action vector as $\delta = (\delta_1, \ldots, \delta_K)$ where $\delta_i = \xi_i(\Delta)$, $i = 1, \ldots, K$, and where Δ is disagreement action.
- Bargaining problem is (V, δ)
- Aim is to find some function, ξ, that specifies a bargaining outcome $\xi(V, \delta)$ for every bargaining problem (V, δ) that satisfies the following axioms.
A-1 Pareto efficiency:
A-2 Symmetry:
A-3 Invariance:
A-4 Independence of irrelevant alternatives:

Existence of Nash Equilibrium

There exists a unique bargaining solution (provided feasible region is non-empty) that satisfy A1 – A4 and it is given by the solution of the following optimization problem

\[
\max (\nu_1 - \delta_1)(\nu_2 - \delta_2)
\]
subject to \(\nu_i \geq \delta_i, i = 1, 2\)
\((\nu_1, \nu_2) \in \mathcal{V}\)

\[\text{(36)}\]

Generalized to K—player

$$\max \prod_{i=1}^{K} (\nu_i - \delta_i) \text{ subject to } \nu_i \geq \delta_i, \ i = 1, \ldots, K \ (\nu_1, \ldots, K) \in \mathcal{V}. \quad (37)$$

Since the set \mathcal{V} is convex, hence NBS is proportionally fair also.
The channel model is

\[Y(t) = \sum_{i=1}^{K} \tilde{H}_i(t)X_i(t) + \eta_b(t) \] (38)

\[Z(t) = \sum_{i=1}^{K} \tilde{G}_i(t)X_i(t) + \eta_e(t) \] (39)

- \(\eta_b(t), \eta_e(t) \sim \mathcal{N}(0, 1) \), \(H_i(t) \triangleq |\tilde{H}_i(t)| \) and \(G_i(t) \triangleq |\tilde{G}_i(t)| \)
- \(H_i(t) \in \mathcal{H}_i \triangleq \{h_i^{(1)}, \ldots, h_i^{(M_i(H))}\} \) with probabilities \((w.p.) \) \(\{\alpha_i^{(1)}, \ldots, \alpha_i^{(M_i(H))}\} \)
- \(G_i(t) \in \mathcal{G} \triangleq \{g_i^{(1)}, \ldots, g_i^{(M_i(G))}\} \) \(w.p. \) \(\{\beta_i^{(1)}, \ldots, \beta_i^{(M_i(G))}\} \)
Power can be choosen from $\mathcal{P}_i \triangleq \{ P_i^{(1)}, \ldots, P_i^{(M)} \}$ subject to

$$\sum_{j=1}^{K} \alpha_i^{(j)} \beta_i^{(j)} P_i^{(j)} \leq \bar{P}_i. \quad (40)$$

Receiver decodes via succesive decoding in the increasing order of main channel gain.

We define

$$C_b (P_{\pi(i)}, H_{\pi(i)}) \triangleq \frac{1}{2} \log \left(1 + \frac{H_{\pi(i)} P_{\pi(i)} (H_{\pi(i)}, G_{\pi(i)})}{1 + \sum_{j=i+1}^{K} H_{\pi(j)} P_{\pi(j)} (H_{\pi(j)}, G_{\pi(j)})} \right) \quad (41)$$

$$C_e (P_{\pi(i)}, G_{\pi(i)}) \triangleq \frac{1}{2} \log \left(1 + \frac{G_{\pi(i)} P_{\pi(i)} (H_{\pi(i)}, G_{\pi(i)})}{1 + \sum_{j \neq i}^{K} G_{\pi(j)} P_{\pi(j)} (H_{\pi(j)}, G_{\pi(j)})} \right) \quad (42)$$
Receiver sends ACK to user $\pi(i)$ if

$$r_{\pi(i)} \leq (C_b(P_{\pi(i)}, h_{\pi(i)}, g_{\pi(i)}) - C_e(P_{\pi(i)}, h_{\pi(i)}, g_{\pi(i)}))^+ \tag{43}$$

Feasible Action Space

$$\mathcal{P}_i = \left\{ P_i = (P_i^{(1)}, \ldots, P_i^{(M)}) : P_i^{(k)} \in \{p_i^{(1)}, \ldots, p_i^{(M)}\}, \right.$$

$$\sum_{j=1}^{M} \alpha_i(j) \beta_i^{(j)} P_i^{(j)} \leq \overline{P}_i \left\} \tag{44}$$
Fading-MAC without CSI of Eve

- Outage based metric

\[P^S_O \triangleq \Pr \{ r_i > C_b (P_{\pi(i)}, H_{\pi(i)}) - C_e (P_{\pi(i)}, G_{\pi(i)}) \} \] \hspace{1cm} (45)

- We define

\[\Gamma = \frac{1}{2^{r_{\pi(i)}}} \left(1 + \frac{h_{\pi(i)}p_{\pi(i)}}{1 + \sum_{j=i+1}^{K} h_{\pi(j)}p_{\pi(j)}} \right) \] \hspace{1cm} (46)

- Hence

\[P^S_O = \Pr \left\{ 1 + \frac{g_{\pi(i)}p_{\pi(i)}}{1 + \sum_{j \neq i}^{K} g_{\pi(j)}p_{\pi(j)}} > \Gamma \right\} \] \hspace{1cm} (47)

- Now the receiver send ACK if \(P^S_o < \epsilon \), else NACK.

- Utility is now defined as

\[\omega_{\pi(i)} \left(a^{(t)}_{\pi(i)}, h_{\pi(i)}(t) \right) = 1_{\{ P^S_o < \epsilon \}} \] \hspace{1cm} (48)
Simulation Results: MAC without Eve

Figure: Comparison of Sum-Rate in Fading MAC without Eve: Fixed rate transmission
Figure: Sum-rate comparison: Multiple rate (3 states)
Figure: Comparision of Fairness b/w NBS and PP
Figure: Fading MAC without Eve: Comparison with other schemes (Multiple rate transmission)
Figure: Fading MAC-WT: Comparison with full CSI and other scheme (Multiple rate)
Outline

1. Introduction
2. Single user Wiretap Channel: Alternate Secrecy Notion
3. Single User Wiretap Channel: Time Slotted System
4. Fading MAC: Resource Allocation
5. Fading MAC: Game Theoretic Formulation
6. Fading MAC: Time Slotted System
7. Conclusions and Future Work
Discrete Memoryless Wiretap Channel

![Diagram of Discrete Memoryless Multiple Access Wiretap Channel]

Figure: Discrete Memoryless Multiple Access Wiretap Channel

Part of this work has been presented in IEEE WCNC 2015, New Orleans, USA

Shah&Sharma — Enhancing Secrecy Rates and Resource Allocation in Single-User & Multi-User Fading Wiretap Channels 64/84
Codebook for MAC-WT

MAC-WT

- 2-user MAC-WT \((X_1 \times X_2, p(y, z|x_1, x_2), Y, Z), X_1, X_2, Y, Z\) are finite sets and \(p(y, z|x_1, x_2)\) is the collection of t.p.m.
- 2 users want to send messages \(W^{(1)}\) and \(W^{(2)}\) to Bob reliably, keeping Eve ignorant.
- \((2^{nR_1}, 2^{nR_2}, n)\) codebook consists of:
 - Message sets \(W^{(1)}\) and \(W^{(2)}\) of cardinality \(2^{nR_1}\) and \(2^{nR_2}\)
 - Two independent Messages \(W^{(1)}\) and \(W^{(2)}\), uniformly distributed over \(W^{(1)}\) and \(W^{(2)}\)
 - Stochastic encoders,

\[
f_i : W^{(i)} \rightarrow X_i^n \quad i = 1, 2, \quad (49)
\]
Codebook for MAC-WT

MAC-WT

4) Decoder at Bob:

\[g : \mathcal{Y}^n \rightarrow \mathcal{W}^{(1)} \times \mathcal{W}^{(2)}. \] \hspace{1cm} (50)

average probability of error at Bob is

\[P_e^{(n)} \triangleq P \left\{ \left(\hat{W}^{(1)}, \hat{W}^{(2)} \right) \neq \left(W^{(1)}, W^{(2)} \right) \right\}. \] \hspace{1cm} (51)

Leakage Rate is

\[R_L^{(n)} = \frac{1}{n} I(W^{(1)}, W^{(2)}; Z^n), \] \hspace{1cm} (52)
Capacity region of DM-MAC

Capacity Region for DM-MAC

Closure of convex hull of all rate pair \((R_1, R_2)\) satisfying

\[
R_1 \leq I(X_1; Y|X_2),
\]
\[
R_2 \leq I(X_2; Y|X_1),
\]
\[
R_1 + R_2 \leq I(X_1, X_2; Y),
\]

for some \(X_1, X_2\) independent.
Discrete Memoryless MAC-WT

Inner Bound

- Secrecy Capacity region *not known* for DM-MAC-WT
- Inner bound was proposed by Tekin and Yener \(^1\)

Secrecy-Rate Region for MAC

Rates \((R_1, R_2)\) are achievable with \(\limsup_{n \to \infty} R_L^{(n)} = 0\), if there exist independent random variables \((X_1, X_2)\) satisfying

\[
R_1 \leq I(X_1; Y|X_2) - I(X_1; Z), \\
R_2 \leq I(X_2; Y|X_1) - I(X_2; Z), \\
R_1 + R_2 \leq I(X_1, X_2; Y) - I(X_1; Z) - I(X_2; Z). \tag{54}
\]

Notation

- $\overline{W}^{(i)}_k$ denotes message of user i in slot k.
- $X^{(i)}$ denotes n-length codeword transmitted by user i.
- $\overline{W}^{(i)}_k = (\overline{W}^{(i)}_{k,1}, \overline{W}^{(i)}_{k,2})$, $\overline{W}^{(i)}_{k,1}$ being first part and $\overline{W}^{(i)}_{k,2}$ the second part.
- $X^{(i)} = (X^{(i)}_1, X^{(i)}_2)$, $X^{(i)}_1$ is n_1-length codeword for $\overline{W}^{(i)}_{k,1}$ and $X^{(i)}_2$ is codeword for $\overline{W}^{(i)}_{k,2}$.
Also the encoders will now be defined as

\begin{align}
 f_1^s & : \mathcal{W}^{(1)} \to \mathcal{X}_1^{n_1}, \quad f_1^d : \mathcal{W}^{(1)} \times \mathcal{K}_1 \to \mathcal{X}_1^{n_2} \\
 f_2^s & : \mathcal{W}^{(2)} \to \mathcal{X}_2^{n_1}, \quad f_2^d : \mathcal{W}^{(2)} \times \mathcal{K}_2 \to \mathcal{X}_2^{n_2},
\end{align}

(55) (56)

where $\mathcal{X}_i \in \mathcal{X}_i, i = 1, 2,$

- $\mathcal{K}_i, i = 1, 2$ are the sets of secret keys generated for the respective user, $f_i^s, i = 1, 2$ are the wiretap encoders,
- $f_i^d, i = 1, 2$ are the deterministic encoders, $n_1 + n_2 = n$
Fix distributions p_{X_1}, p_{X_2} & consider time slotted system

Initialization: Take $n_1 = n_2 = n/2$ & in Slot 1 User i transmits $\overrightarrow{W}_1^{(i)}$ via Wiretap Coding

Slot 2: Each user selects two messages $(\overrightarrow{W}_{21}^{(i)}, \overrightarrow{W}_{22}^{(i)}) \equiv \overrightarrow{W}_2^{(i)}, i = 1, 2$

- $(\overrightarrow{W}_{21}^{(1)}, \overrightarrow{W}_{21}^{(2)})$ transmitted via Wiretap coding
- For $\overrightarrow{W}_{22}^{(i)}$, first take XOR with previous message, then transmit $\overrightarrow{W}_{22}^{(i)} \oplus \overrightarrow{W}_1^{(i)}$ via usual MAC coding
Coding Scheme

- Slot 3: Transmit first part of message via Wiretap coding (WTC)
- 2nd part by \oplus with previous message, hence \textit{rate doubled}.
- Slot λ: We define

\begin{align*}
\lambda_i \triangleq & \left\lceil \frac{I(X_i; Y|X_j)}{I(X_i; Y|X_j) - I(X_i; Z)} \right\rceil, \quad (i \neq j, i, j \in \{1, 2\}) \\
\lambda \triangleq & \max\{\lambda_1, \lambda_2\} + 1
\end{align*} (57)
Coding Scheme

- After some slot $\lambda^* > \lambda$ sum-rate will get saturated

\[
R_1 + R_2 \leq I(X_1, X_2; Y). \tag{58}
\]

- Slot k ($k > \lambda$): For $\overline{W}_k^{(i)} = (\overline{W}_k^{(1)}, \overline{W}_k^{(2)})$, $i = 1, 2$, use WTC for $(\overline{W}_k^{(1)}, \overline{W}_k^{(2)})$ & for the 2^{nd} part, encode $\overline{W}_k^{(i)} \oplus \overline{W}_{k-1}^{(i)}$ & transmit at Shannon rate (R_1^*, R_2^*).

- Then we make n_2/n_1 large enough to achieve close to Shannon Capacity for the whole slot.
We consider the following Secrecy measure

\[I(W^{(1)}, W^{(2)}; Z^n) \leq n\epsilon. \]

(59)

We note that

\[I(W^{(1)}, W^{(2)}; Z^n) \leq I(W^{(1)}; Z^n|X^n_2) + I(W^{(2)}; Z^n|X^n_1) \]

\[k^{th} \text{ slot} \]

Let the leakage rate inequality

\[I(W_i^{(1)}, W_i^{(2)}; Z^n_1, \ldots, Z^n_k) \leq 2n_1\epsilon, \text{ for } l = 1, \ldots, k \]

(60)

hold for \(k \), then it holds for \(k + 1 \) slot also (Mathematical Induction).
Enhancing rate in Strong Sense

- The same rate region can be achieved in *Strong Secrecy* sense.
- We use *resolvability* based coding scheme in slot 1.
- In subsequent slots use *resolvability coding* scheme instead of wiretap coding.
- We can achieve Shannon capacity region as secrecy rate region satisfying

\[
\limsup_{n \to \infty} I(\overline{W}_k^{(1)}, \overline{W}_k^{(2)}; Z_1^n, Z_2^n, \ldots, Z_k^n) = 0,
\]

as \(n \to \infty \).
We consider the following model

Figure: Discrete Memoryless Multiple Access Wiretap Channel with secret key buffers
By using very old messages as keys we have the following result

Theorem

The secrecy-rate region of a DM-MAC-WT equals the usual Shannon capacity region of the MAC while satisfying

\[
I(W_k^{(1)}, W_{k-1}, \ldots, W_{k-N_1}; Z_1, \ldots, Z_k | X_k^{(2)}) \leq n_1 \epsilon, \n
I(W_k^{(2)}, W_{k-1}, \ldots, W_{k-N_1}; Z_1, \ldots, Z_k | X_k^{(1)}) \leq n_1 \epsilon, \n
I(W_k^{(1)}, W_k^{(2)}, \ldots, W_{k-N_1}, W_{k-N_1}; Z_1, \ldots, Z_k) \leq 2n_1 \epsilon. \tag{62}
\]
Fading MAC-WT

- Channel model

\[Y = \tilde{H}_1 X_2 + \tilde{H}_2 X_2 + N_1 \quad Z = \tilde{G}_1 X_1 + \tilde{G}_2 X_2 + N_2, \quad (63) \]

- Notation

\[
\begin{align*}
C_1(P_1(H, G)) & \triangleq \frac{1}{2} \log \left(1 + \frac{H_1 P_1(H, G)}{\sigma_1^2} \right) \\
C_2(P_2(H, G)) & \triangleq \frac{1}{2} \log \left(1 + \frac{H_2 P_1(H, G)}{\sigma_1^2} \right) \\
C_1^e(P_1(H, G)) & \triangleq \frac{1}{2} \log \left(1 + \frac{G_1 P_1(H, G)}{\sigma_2^2 + G_2 P_2(H, G)} \right) \\
C_2^e(P_2(H, G)) & \triangleq \frac{1}{2} \log \left(1 + \frac{G_2 P_2(H, G)}{\sigma_2^2 + G_1 P_1(H, G)} \right) \\
C(P_1(H, G), P_2(H, G)) & \triangleq \frac{1}{2} \log \left(1 + \frac{H_1 P_1(H, G) + H_2 P_2(H, G)}{\sigma_1^2} \right) \\
\end{align*}
\]
We have the following result: If $Pr(H_{ik} > G_{ik}) > 0$, $i = 1, 2$, and all the channel gains are available at all the transmitters, then the following long term average rates that maintain the leakage rates (62), are achievable:

$$R_1 \leq \frac{1}{2} E_{H,G} [C_1 (P_1(H))] ,$$

$$R_2 \leq \frac{1}{2} E_{H,G} [C_2 (P_2(H))] ,$$

$$R_1 + R_2 \leq \frac{1}{2} E_{H,G} [C (P_1(H), P_2(H))] .$$

(65)

where P is any policy that satisfies avg. power constraint. If only Bob knows all the channel states but not the transmitters, then (R_1, R_2) satisfies (65) with $P_i(H, G) \equiv \overline{P}_i$, $i = 1, 2$.
Outline

1. Introduction
2. Single user Wiretap Channel: Alternate Secrecy Notion
3. Single User Wiretap Channel: Time Slotted System
4. Fading MAC: Resource Allocation
5. Fading MAC: Game Theoretic Formulation
6. Fading MAC: Time Slotted System
7. Conclusions and Future Work
Conclusions

- Proposed Probability of error as metric of security
- Achieved Shannon capacity in wiretap channel via previous messages
- Power allocation in fading MAC-WT without CSI of Eve
- Extended CJ to enhance secrecy sum-rate in fading MAC-WT
- Used Algorithmic Game theory to allocate resources in fading MAC with individual CSI only
- Extended the same algorithms to fading MAC-WT
- Extended coding scheme of using previous messages as key to MAC to achieve Shannon Capacity region
Future Work

- Develop practical codes based on probability of error at Eve as security metric
- Develop practical codes for using previous messages as secret key to enhance secrecy rates
- Resource allocation with continuous state space
References
Thanks

Questions?

Shahid M Shah

shahid.nit@gmail.com