FINITE DATA RECORDS 187

Note that these equations are singular, indicating that a lower model order is possible.
Therefore, setting a(2) = 0 and solving for a(1) we find

a(l) =—r.(1,0)/r:(1,1) =1

Thus,
A@)=1+2z""
and, with 5(0) = 1, the model is
H(z) =
@ 14 2z-1
As a result, the model produces an exact fit to the dataforn =0, 1, ..., N.

Before concliding, we mention some modifications and generalizations to the covari-
ance method that may be appropriate in certain applications. Recall that in the development
of the covariance method it was assumed that x(n) is only known or specified over the
finite interval [0, N — 1]. As a result, Prony’s error was modified so that it included only
those values of e(n) that could be evaluated from the given data. Specifically, the covariance
method minimizes the error

N
ES = e (4.132)
n=p

However, if x(n) begins at time n = 0, i.e., x(n) = O for n < 0, then e(n) may be evaluated
for all n < N. Therefore, the covariance method may be modified to minimize the error

N
£ = |em|’
n=0

In this case, the all-pole coefficients are found by solving the covariance normal equations
in Eq. (4.127) with the autocorrelations r, (k, [} computed as follows

N
ek, D) =) x(n—Dx*(n — k) (4.133)
=0

This method is sometimes referred to as the prewindowed covariance method. In a similar
vein, if x(n) is known to be equal to zero for # > N, then we may minimize the error

£ =3 lem|
n=p

which leads to the post-windowed covariance method. Again, the all-pole coefficients are
found by solving Eq. (4.127) with the autocorrelation sequence computed as in Eq. (4.133)
with the sum extending fromn = pton = oo.

Each form of covariance method may also be modified to accommodate the case in
which x(n) is given over an arbitrary interval, say [L, U]. For example, with the covariance
method the error to be minimized would become

U

g=3 |em)|?

n=L+p

188 SIGNAL MODELING

and the normal equations that must be solved are the same as Eq. (4.127) with

U
rok,D = Z x(n—=Dx*(n—k)

n=L+p

Finally, although derived only for the case of all-pole modeling, the covariance method may
also be used for pole-zero modeling. In this case, Eq. (4.132) would be modified as follows

N

E,= > lem|

max(g+1, p)
and the coefficients are found by solving the normal equations Eq. (4.35) with

N

ri(k,) = Z x(n —Dx*(n —k)

max(g+1, p) "

4.7 STOCHASTIC MODELS

In the preceding sections, we looked at different approaches for modeling deterministic
signals. In each case, the values of x (n) were known, either for all n or for values of n over
some fixed finite interval. In some applications, however, it is necessary to develop mod-
els for random processes—signals whose values are unknown and may only be described
probabilistically. Examples include signals whose time evolution is affected or driven by
random or unknown factors, as is the case for electrocardiograms, unvoiced speech, pop-
ulation statistics, sunspot numbers, economic data, seismograms, and sonar data. Models
for random processes differ from those for deterministic signals in two ways. First, since
a random process may only be characterized statistically and the values of x(n) are only
known in a probabilistic sense, the errors that are minimized for deterministic signals are
no longer appropriate. Recall, for example, that with Prony’s method the coefficients a, (k)
are found by minimizing the deterministic squared error

fo’s)) P 2
g= 3 lewf=3 Ix(n) + 3 a,(0)x(n — k) (4.134)
n=q+1 n=q+1 k=1 v

Therefore, if x(n) is only known probabilistically, then it is not feasible to consider mini-
mizing £,. The second difference is in the characteristics of the signal that is used as the
input to the system that is used to model x (n). Whereas for deterministic signals the input
signal was chosen to be a unit sample, for a random process the input signal must be a
random process. Typically, this input will be taken to be unit variance white noise.

With these two differences in mind, in this section we consider the problem of modeling
a wide-sense stationary random process. As we will see, the Yule-Walker equations will
play an important role in the development of stochastic modeling algorithms. We begin, in
Section 4.7.1, with the problem of modeling an autoregressive moving average process. We
will develop two approaches, the Modified Yule-Walker Equation (MYWE) method and
the least squares MY WE method. Both of these approaches are based on solving the Yule-
Walker equations. Then, in Section 4.7.2, we consider the special case of autoregressive
(all-pole) processes. Here we will see that all-pole modeling of a random process is similar
to all-pole modeling of a deterministic signal. The primary difference is in how the autocor-
relations are defined in the stochastic all-pole normal equations. Finally, in Section 4.7.3, we

STOCHASTIC MODELS 189

consider the problem of modeling a moving average (all-zero) process and develop two new
approaches. The first, spectral factorization, requires factoring a polynomial of order 2¢
for a gth-order moving average process. The second, Durbin’s method, avoids polynomial
rooting by modeling the moving average process with a high-order all-pole model and then
forming an estimate of the moving average coefficients from the all-pole coefficients.

4.7.1 Avutoregressive Moving Average Models

As we saw in Section 3.6.1, a wide-sense stationary ARMA(p, ¢g) process may be generated
by filtering unit variance white noise v(r) with a causal linear shift-invariant filter having
p poles and g zeros,

i by(kyz~*

_By(» =0

=40 ¢
1+ apz*
k=1

Therefore, a random process x(r) may be modeled as an ARMA(p, ¢q) process using the
model shown in Fig. 4.21 where v(n) is unit variance white noise. To find the filter coeffi-
cients that produce the best approximation x(n) to x(n) we could take the approach used
in Section 4.2, replacing the least squares error £, 5 with a mean square error

Eus = E{|x() — 2m)|*)

However, this would lead to a set of nonlinear equations just as it did in the least squares
method of Section 4.2. Therefore, we will consider another approach.

In Section 3.6.1 (p. 110), we saw that the autocorrelation sequence of an ARMA(p, q)
process satisfies the Yule-Walker equations'?

14
re(k) + Y ap(Dyretk = 1) = c, (k) (4.135)
I=1

where the sequence ¢, (k) is the convolution of b, (k) and A*(—k),

q—k
cq(k) = by(k) x h*(—k) = Y _ by(I + k)h* (1) (4.136)
1=0
v(n) _ B, x(n)

— H(@) —

Ap(2)

Figure 4.21 Modeling a random process x(n) as the re-
sponse of a linear shift-invariant filter to unit variance white
noise.

3Note that af in Eq. (3.115) has been set equal to one since here we are assuming that v(n) has unit variance.

190 SIGNAL MODEUNG

and r, (k) is a statistical autocorrelation,
re(k) = E{x(n)x*(n — k)}

Since £ (n) is assumed to be causal, then ¢, (k) = O for k > g and the Yule-Walker equations
for k > g are a function only of the coefficients a,(k),

P
)+ Y aDrk—D) =0 ; k>gq 4.137)
=1

Expressing Eq. (4.137) in matrix formfork =g + 1,9 +2,...,9 + p we have

re(q) ry(@g—1) e (@—p+1) ap(l)) r(g+1)

r.r(q+l) rx(q) "x(q—P+2) ap(z) _ rx(q +2)

rg+p—1 r@g+p=2) - re(q) ap(p) re(q + p)
(4.138)

which is a set of p linear equations in the p unknowns, a,(k). These equations, referred
to as the Modified Yule-Walker equations, allow us to find the coefficients a, (k) in the
filter H(z) from the autocorrelation sequence r, (k) for k = q,q + 1,...,q9 + p. This
approach, therefore, is called the Modified Yule-Walker Equation (MY WE) method. If the
autocorrelations are unknown, then they may be replaced with estimated autocorrelations
7. (k) using a sample realization of the process.

Comparing the modified Yule-Walker equations to the Padé equations for the denom-
inator coefficients given in Eq. (4.13), we see that the two sets of equations have exactly
the same form. In fact, the only difference between them is in the definition of the “data
sequence.” In the modified Yule-Walker equations, the “data” consists of the sequence of
autocorrelations ry (k), whereas in the Padé approximation, the data are the values of x (n).
As in the Padé approximation method, since the matrix in Eq. (4.138) is a nonsymmetric
Toeplitz matrix, these equations may be solved efficiently for the coefficients a, (k) using
the Trench algorithm [18].

Once the coefficients a,(k) have been determined, the next step is to find the MA
coefficients, b, (k). There are several approaches that may be used to accomplish this. If
x(n) is an ARMA(p, q) process with power spectrum

B, (z)B;(l/z*)

Px(Z) = Ap(z)A;(]/z*)

then filtering x (n) with alinear shift-invariant filter having a system function 4 ,(z) produces
an MA(q) process, y(n), that has a power spectrum
Py(z) = By(2) B}(1/2")

Therefore, the moving average parameters b, (k) may be estimated from y(n) using one of
the moving average modeling techniques described in Section 4.7.3. Alternatively, we may
avoid filtering x (n) explicitly and solve for b, (k) as follows. Given a,(k), the Yule-Walker

STOCHASTIC MODELS 191

equations may be used to find the values of the sequence ¢, (k) fork =0,1,...,q,
r:(0) re(l) e (D) 1 ¢y (0)
r(1) rx(0) ceori(p—=1) ap(l) cg (1)
r«(q@) g+l - r(0) ap(p) cq(q)

which may be written as

R;a, =¢, 4.139)

Since ¢, (k) = 0 for k > ¢q the sequence ¢, (k) is then known for all k¥ > 0. We will denote
the z-transform of this causal or positive-time part of ¢, (k) by [Cq (z)] +

o0

[C @], =) c)z
k=0

Similarly, we will denote the anticausal or negative-time part by [C,(2)]_,

—1 00
[Cq(z)]_ = Z cq(k)z_k = Zcq(—k)zk
k=—00 k=1
Recall that c, (k) is the convolution of b, (k) with 2*(—k). Therefore,
. . B*(1/z%)
C,(2) = By(z)H*(1/2%) = Bq(z)A—q;(m
Multiplying C,(z) by 47;,(1/z*) we have
Py(2) = Cq(z)A;(l/z*) = Bq(z)B;(l/z*) (4.140)

which is the power spectrum of an MA(g) process. Since a,(k) is zero for & < 0, then
A7(1/z*) contains only positive powers of z. Therefore, with

Py(2) = Cp(2) A3(1/2") = [Cy(2)], 45(1/2%) + [Co(2)]_45(1/z%) (4.141)

since both [Cq (z)]_ and A4;(1/z*) are polynomials that contain only positive powers of z,
then the causal part of P,(z) is equal to

[P@)], = |:[Cq(z)]+A;(l/z*):| (4.142)
+

Thus, although ¢, (k) is unknown for k < 0, the causal part of P,(z) may be computed from
the causal part of ¢, (k) and the AR coefficients a,(k). Using the conjugate symmetry of
P,(z) we may then determine P,(z) for all z. Finally, performing a spectral factorization

192 SIGNAL MODELING

of P,(2),

Py(z) = By (z)B;(l/z*) (4.143)

produces the polynomial B,(z). The procedure is illustrated in the following example.

Example 4.7.1 The MYWE Method for Modeling an ARMA(1,1) Process

Suppose that we would like to find an ARMA(1,1) model for a real-valued random process
x(r) having autocorrelation values

r(0)=26 ; (=7 ; rn(@2)=7/2
The Yule-Walker equations are

r(0) (1) . c1(0)
re(1) 1 (0) [a(l)]— a(l) (4.144)
12 r(l) : 0

Thus, the modified Yule-Walker equations are
re(Da(l) = —r(2)

which gives a1 (1) = —r, (2)/r, (1) = —1/2.
For the moving average coefficients we begin by computing ¢;(0) and ¢;(1) using the
Yule-Walker equations as follows

re(0) re(1) 1 _'cl(O)]
re() @ || e | [aD

With the given values for r, (k), using a; (1) = —1/2, we find
a®] _[26 7 1] _[45/2
aM || 7 26 -1/2 | - -6

[Ci@], =% —6z""
Multiplying by A7(1/2*) = 1 — 0.5z we have
[Ci@], 47(1/z) = (£ —627"') (1 —0.52) = =Bz + 3 — 627"

and

Therefore, the causal part of P,(z) is

[P@)], = [[Cl(z)]+A*;(1/z*)] =36

+

Using the symmetry of P,(z), we have
Ci1(2)41(1/z") = Bi(2) Bf(1/2") = =6z + § — 627"
Performing a spectral factorization gives

Bi(2)B}(1/2") = 24(1 — 327)(1 — §2)

STOCHASTIC MODELS 193

so the ARMAC(1,1) model is

1 -0.25z7"

H =
() =2Y6 55

Just as with the Padé approximation, the MY WE method only uses the values of 7, (k)
fork =q.,q+1...., g9+ ptoestimate the coefficients a, (k). If . (k) is unknown and must
be estimated from the data, then the accuracy of the model will depend on how accurately
ry(k) may be estimated. However, suppose that we may estimate r, (k) for k > p+ ¢q. This
would certainly be possible, for example, if N 3> p+q where N is the length of x (r). How
may these estimates be used to improve the accuracy of the coefficients a,(k)? As we did in
extending the Padé approximation method to Prony’s method, we may consider the problem
of finding the set of coefficients a, (k) that produces the “best fit,” in a least squares sense, to
a given set of autocorrelation values. For example, given the autocorrelation sequence r, (k)

fork=0,1,..., L, we may form the set of extended Yule-Walker equations by evaluating
Eqg. (4.135)fork =0, 1, ..., L as follows:
re(0) ri(l) r(2) e r¥(p) T EAON
re(1) r<(0) ey o ri(p=1 1 cg(D)
: : : : ap(1) :
@) rg=1 -2 - rq-p %D | = @
re(g+1) rdq) r(@g—1 - ng—p+1 0
: : : : ap(p) :
(L) rnl-1) rn(L-=2) -+ rn(l-p)] | 0]
(4.145)
From the last L — g equations we have
r(q) rg—1 - rnn(g—p+1 ap(l) r(g+ 1)
rn(g+1 r:(q) e rxlg—p+2) ay(2) r:(q +2)
.) r R T B AP
r(L—=1) r(L=2) -+« r(L—p) a,(p) re(L)
or
Rsa, = -1 (4.147)

which is an overdetermined set of linear equations in the unknowns a,(k). As we did in
Prony’s method (p. 154), we may find the least squares solution, which is found by solving
the equations

(RYR;)a, = —Rlrg (4.148)

where (R;" Rq) isa p x p Hermitian Toeplitz matrix whose elements are the autocorrelations
of the sequence r, (k).

194 SIGNAL MODELING

4.7.2 Autoregressive Models

A wide-sense stationary autoregressive process of order pisaspecial case ofan ARMA(p, q)
process in which ¢ = 0. An AR(p) process may be generated by filtering unit variance
white noise, v(n), with an all-pole filter of the form
bh(0
Hp = — 2O (4.149)

p
1+ ap (kyz™*
k=1
Just as with an ARMA process, the autocorrelation sequence of an AR process satisfies the
Yule-Walker equations, which are

P
re) + Y apDrek —1) = |bOPsk) 5 k=0 (4.150)
=1

Writing these equations in matrix form for k = 1, 2, ... p, using the conjugate symmetry
of r.(k), we have

r(0) ri(l) ry(2) eorip—1) ay(1) re(1)
re(1) 1 (0) ri() e ri(p—2) a,(2) rx(2)
rx(2) re(1) r:(0) < ri(p—3) a,3) = _| (3
r(p—1) r(p—=2) r(p—=3) -+ r(0) ay(p) r«(p)
4.151)
Therefore, given the autocorrelations r. (k) for k = 0,1..., p we may solve Eq. (4.151)

for the AR coefficients a, (k). This approach is referred to as the Yule-Walker method. If we
compare Eq. (4.151) to the normal equations for all-pole modeling of a deterministic signal
using Prony’s method, Eq. (4.79), we see that the two sets of equations are identical. The
only difference between them is in how the autocorrelation 7, (k) is defined. In the all-pole
Prony method, , (k) is a deterministic autocorrelation, whereas in the Yule-Walker method
r (k) is a statistical autocorrelation. Finally, to determine the coefficient 5(0) in the AR
model we may use the Yule-Walker equation for £ = 0 as follows

P
O =r.0) + Y _ a,()re(k) (4.152)
k=1

In most applications, the statistical autocorrelation 7, (k) is unknown and must be esti-
mated from a sample realization of the process. For example, given x(n) for 0 < n < N,
we may estimate r, (k) using the sample autocorrelation

| M=l

Folk) = = x(n)x(n —k 4.153

) =+ ;0 (n)x(n — k) (4.153)

However, note that once we replace the statistical autocorrelation r, (k) with this estimate,

we have come full circle back to the autocorrelation method. Therefore, in spite of the

important philosophical differences between deterministic and stochastic all-pole signal

modeling, the two approaches become equivalent when the autocorrelation sequence must
be estimated.

STOCHASTIC MODELS 195

4.7.3 Moving Average Models

A moving average process is another special case of ARMAC(p, q) process. An MA(qg)
process may be generated by filtering unit variance white noise v(n) with an FIR filter of
order g as follows:

q
x(n) =) _by(kyv(n — k)
k=0

The Yule-Walker equations relating the autocorrelation sequence to the filter coefficients
by (k) are

q -kl
re(k) = by (k) x b3 (—k) = Y bo(l + kB3 (1) (4.154)
=0

Note that, unlike the case for an autoregressive process, these equations are nonlinear in
the model coefficients, b, (k). Therefore, even if the autocorrelation sequence were known
exactly, finding the coefficients b, (k) may be difficult. Instead of attempting to solve the
Yule-Walker equations directly, another approach is to perform a spectral factorization of
the power spectrum P, (z). Specifically, since the autocorrelation of an MA(q) process is
equal to zero for |k| > g, the power spectrum is a polynomial of the form

q9
Pi(2) =) r()z™F = By(2)B;(1/2%)

k=—q

q q
@[]0 = Bz [] - Bt (4.155)
k=1 k=1
where
q
By(2) =) bylk)z™*
k=0
Using the spectral factorization given in Eq. (3.102), P;(z) may also be factored as follows
q q
P(z)=0f Q(2) 0*(1/z) = [[A —auz™H [(1 — ef2) (4.156)
k=1 k=1

where Q(z) is a minimum phase monic polynomial of degree g, i.e., || < 1. Comparing
Eqgs. (4.155) and (4.156) it follows that b,(0) = oo and that Q(z) is the minimum phase
version of B, (z) that is formed by replacing each zero of B, (z) that lies outside the unit
circle with one that lies inside the unit circle at the conjugate reciprocal location. Thus,
given the autocorrelation sequence of an MA(g) process, we may find a model for x(n) as
follows. From the autocorrelation sequence r, (k) we form the polynomial P, (z) and factor
it into a product of a minimum phase polynomial, Q(z), and a maximum phase polynomial
Q*(1/z*) as in Eq. (4.156). The process x(n) may then be modeled as the output of the
minimum phase FIR filter

q
H@) =000@) =00y qk)z™*

k=0

14Since there is nothing that prohibits B, (z) and thus Q(z) from having zeros on the unit circle, here we are allowing
the factors of Q(z) to have roots on the unit circle.

196 SIGNAL MODELING

driven by unit variance white noise. It should be pointed out, however, that this model is
not unique. For example, we may replace any one or more factors (1 —a;z™") of Q(z) with
factors of the form (1 — «};z). The following example illustrates how spectral factorization
may be used to find a moving average model for a simple process.

Example 4.7.2 Moving Average Model Using Spectral Factorization
Consider the MA(1) process that has an autocorrelation sequence given by
re(k) = 178(k) + 4[5k — 1) + 8(k + 1)]
The power spectrum is the second-order polynomial
P(2) =17+4z"' +4z = 2[4+ 1727 + 4277]
Performing a spectral factorization of P, (z) we find
P(2)=z(4+z)(1+4z7)=(4+2") 4 +2)

Therefore, x(n) may be modeled as the output of an FIR filter having a system function
equal to either

H(z)=4+z""
or

HZ) =1+4z7"

As an alternative to spectral factorization, a moving average model for a process x(n)
may also be developed using Durbin’s method [5]. This approach begins by finding a
high-order all-pole model A,(z) for the moving average process. Then, by considering the
coefficients of the all-pole model a, (k) to be a new “data set,” the coefficients of a gth-
order moving average model are determined by finding a gth-order all-pole model for the
sequence a,(k). More specifically, let x (n) be a moving average process of order ¢ with

q
By(z) =Y by(kyz™*
k=0
so that
q
x(n) =Y by(Kyw(n — k)
k=0

where w(n) is white noise. Suppose that we find a pth-order all-pole model for x (n) and
that p is large enough so that"

B,(2) ~ —— = ! (4.157)

A ()
r) a,0) + }: a,(kyz~*
k=1

For example, if

Bi(z) = b(0) — b(1)z™!

I5Note that the coefficient that normally appears in the numerator of the all-pole model has been absorbed into the
denominator, thereby making the coefficient a,,(0) some value other than one, in general.

STOCHASTIC MODELS 197

and |b6(0)| > |b(1)| then 1/ B (z) may be expanded in a power series as follows

1 1 LR =
@ = bO b = b0 &P

where

b(1)
B=1s
b(0)
Therefore, if p is sufficiently large so that 87 = 0 then B,(z) may be approximated by the
expansion
b(0)
1+ﬁ2_l +...+ﬁPZ—P
Once a high-order all-pole model for x (n) has been found, it is then necessary to estimate
the MA coefficients b, (k) from the all-pole coefficients a,(k). From Eq. (4.157) we see
that since

Bi(z) = (4.158)

1

1
A,(2) ~ -
B q
"D 0+ by

k=1

then 1/ B, (z) represents a gth-order all-pole model for the “data” a, (k). The coefficients of
the all-pole model for a,, (k) are then taken as the coefficients of the moving average model.
Thus, Durbin’s method may be summarized as follows.

1. Givenx(n) forn =0,1,..., N~ lorr,(k)fork =0,1,..., N — 1, a pth-order
all-pole model is found and the coefficients are normalized, as in Eq. (4.157), by the
gain (numerator coefficient) of the all-pole model. Typically, the model order p is
chosen so that it is at least four times the order ¢ of the moving average process [17].

2. Using the AR coefficients derived in Step 1 as data, a gth-order all-pole model for
the sequence a, (k) is then found. The resulting coefficients, after dividing by the
gain term, are the coefficients of the moving average model.

A MATLAB program for Durbin’s method that uses the autocorrelation method for both
all-pole modeling problems is given in Fig. 4.22.

Durbin’s Method
function b = durbin(x,p.,q)
%
x = x(:);
if p>=length(x), error(’Model order too large’), end

(
[a,epsilon] = acm(x,p);
[b,epsilon] = acm(a/sqrt{epsilon),q);
b = b/sqrt(epsilon)
end;

Figure 4.22 A MATLAB program for finding the moving average coefficients of an all-zero model
for a signal x (n) using Durbin’s method. Note that this program calls acm . (see Appendix).

198 SIGNAL MODELING

Example 4.7.3 The Durbin Algorithm

To illustrate how the Durbin algorithm is used to find a moving average model, consider
the signal x(»n) that has a z-transform

Xz =1-8z"!

where £ is a real number with |8] < 1. The first step in Durbin’s method requires that we
find a high-order all-pole model for x (). Since

1 _ 1 _°° b —k
Xz 11— Bz! _;::O'Bz

then the all-pole model for x (n) using the autocorrelation method with p >> 1 is approxi-
mately

|
1+ Bzt ...+ BPz=P

The next step is to fit a gth-order all-pole model to the sequence a, (k) = B. As we saw in
Example 4.6.1 (p. 179) a first-order all-pole model for this sequence is

H(z) =

H(z) = _‘/i—'__
14+a()z!
where
1— g%
a(l) = _ﬂl _ ﬂz(p+|)
and
1 — ,B4p+2
€= T gz

Therefore, assuming that 87 <« 1, so that €| = 1, the first-order moving average model is

1- g%

—1
1— gzrin?

Bin)=1-8

Note that if, instead of the autocorrelation method in the second step, we were to use the
covariance method, then we would have, as we saw in Example 4.6.2 (p. 184),

a(l) =—p
and the first-order moving average model would be
Bi(z)=1—pz"!

4.7.4 Application: Power Spectrum Estimation

Spectrum estimation is an important application of stochastic signal modeling. As we saw
in Section 3.3.8, the power spectrum of a wide-sense stationary random process x(n) is

o0

P.(e/®) = Z Fe(k)e 7k 4.159)

k=—o0c

STOCHASTIC MODELS 199

where

re(k) = E{x(n)x*(n - k)} (4.160)
is the autocorrelation of x (n). Since r, (k) is generally unknown, spectrum estimation is con-
cerned with the estimation of P, (e/“) from a sample realization of x(n) forn = 0, 1, ..., N.

One approach that may be used to estimate P, (e/®) is to estimate r, (k) from x(n)
and then use this estimate in Eq. (4.159). However, with only N + 1 values of x(n) the
autocorrelation may only be estimated for lags |k| < N, and the power spectrum estimate
would have the form

N
Py =Y Folk)e 4.161)
k=—N
This estimate is limited by two factors. First, since estimated autocorrelations are used
instead of the true values, the accuracy of P, (e/) will be limited by the accuracy of the
estimates 7, (k). Second, since f’x (e/) does not include any estimates of r, (k) for |k| > N,
the power spectrum estimate will be limited in resolution unless r, (k) ~ 0 for |k| > N.

The estimation of P, (e/“) may be facilitated if something is known about the process
x(n) in addition to the signal values. For example, suppose that x(n) is known to be an
autoregressive process of order p. Since the power spectrum of an AR(p) process is

2
P (e/®) =) (4.162)

p
143 aptyeef
k=1

then we may use the Yule-Walker method with estimated autocorrelations to estimate the
coefficients a,(k) and 5(0), and then use these estimates in Eq. (4.162) as follows:

16(0)|2

p
|14) a,(e 7’
k=1

B (e/) = (4.163)

Assuming that the estimates of the model coefficients are sufficiently accurate, this approach
may result in a significantly improved spectrum estimate.

Example 4.7.4 AR Spectrum Estimation
Shown in Fig. 4.23 are N = 64 samples of an AR(4) process that is generated by filtering
unit variance white noise with the fourth-order all-pole filter

b(0)
4

1+ Z a(k)z~*
k=1

H(z) =

where b(0) = 1 and
a(1)=0.7348 ; a(2)=1.8820 ; a@B)=0.7057 ; a(4) =0.8851

which corresponds to a filter having a pair of poles at z = 0.98¢*/7/2 and a pair of poles at
z = 0.96e*/5*/8, Estimating the autocorrelation sequence for [k| < N using

1 N—-1
Fok) = ~ Z;x(n)x(n —k)

200 SIGNAL MODELING

20 T T T T T T

10

-10

_20 L i | i | l
0 10 20 30 40 50 60

Figure 4.23 An AR(4) random process.

Megnitude (dB)
Magnitude (dB}

. A . L N " n s . L L L
[0.1 02 03 04 05 06 07 08 09 1 (] 01 0.2 03 04 05 08
Frequency {unite of pi} Frequency {units of pi}

@) ®)
Figure 4.24 Power spectrum estimation. (a) The estimate of the power spectrum by using estimated

autocorrelations. (b) The estimate of the power spectrum using the Yule-Walker method. In both
figures the true power spectrum is shown by the dashed line.

and substituting these estimates into Eq. (4.161) we obtain the estimate of the spectrum
shown in Fig. 4.24q.

On the other hand, using these estimates of r.(k) in the Yule-Walker equations,
Eq. (4.151), we find the following estimates for 5(0) and a(k),

b(0) =1.4844 ; a(1) =0.7100 ; a(2) =1.6198 ; a(3) =0.6193 ; a(4) =0.6908

Incorporating these estimates into Eq. (4.162) gives the spectrum estimate shown in
Fig. 4.24b.

As we will see in Chapter 8, there are two limitations with this model-based approach
to spectrum estimation. First of all, it assumes that we know how x(n) should be modeled.
In Example 4.7.4, for example, it was assumed that we knew that x(n) was an AR(p)
process. If x (n) is not an autoregressive process and cannot be sufficiently approximated as
an AR process, then this approach will lead to an erroneous spectrum estimate. The second
problem lies in the requirement that the order of the process be known. If p is unknown,
then some criterion must be used to select an appropriate value for the model order. If this
criterion does not produce a precise estimate for p, then x(n) will either be overmodeled

SUMMARY 201

(p too large) or undermodeled (p too small). Both cases will generally result in inaccurate
spectrum estimates.

4.8 SUMMARY

In this chapter, we presented a number of different approaches to signal modeling. The first
part of the chapter was concerned with modeling deterministic signals. Beginning with the
least squares (direct) method, we found that this approach was only of limited use since it
required finding the solution to a set of nonlinear equations. However, in those instances
where it is necessary to find the true least squares solution, we saw that the method of
iterative prefiltering could be used. We then looked at the Padé approximation, which only
requires finding the solution to a set of linear equations and produces a model that exactly
matches the data for the first p + g + 1 values, where p is the number of poles and ¢ is
the number of zeros in the model. In most applications, however, this property of perfect
matching over a finite interval is overly restrictive and compromises the accuracy of the
model for values of » outside this interval. We then developed Prony’s method, which
relaxes the perfect matching property of the Padé approximation and finds a model that is
more accurate, on the average, for all values of n. As with the Padé approximation, Prony’s
method only requires finding the solution to a set of linear equations. After discussing
Shanks’ method, which modifies Prony’s method in the way that the numerator coefficients
are determined, we looked at the special case of all-pole signal modeling using Prony’s
method. The advantage of an all-pole model is that the normal equations are Toeplitz
and may therefore be easily solved using the Levinson-Durbin recursion (Chapter 5). The
Toeplitz structure also provides an advantage in terms of storage and reduces the amount
of computations required to evaluate the autocorrelations in the normal equations. Finally,
we considered the autocorrelation and covariance methods, which address the issue of how
to determine the model when only a finite length data record is available. Here we saw
that there is a tradeoff between computational efficiency and model accuracy. Specifically,
whereas the autocorrelation method preserves the Toeplitz structure of the all-pole normal
equations and guarantees a stable model, it requires that the data be windowed, which results
in a decrease in the accuracy of the model. The covariance method, on the other hand, does
not apply a window to the data and is therefore more accurate in its determination of the
model coefficients, but the Toeplitz structure of the normal equations is lost along with the
guaranteed stability of the model.

In the second part of the chapter, we considered briefly the problem of modeling a
random process. Beginning with an ARMA process, we saw that the Yule-Walker equations
could be used to find the coefficients of the model. In the case of an autoregressive process,
the Yule-Walker equations are identical to the Prony all-pole normal equations. Therefore,
with estimated autocorrelations, stochastic all-pole modeling is essentially equivalent to
deterministic all-pole signal modeling. Finally, for a moving average process, since the
Yule-Walker equations are nonlinear in the filter coefficients we looked at two methods
for deriving the model parameters. The first involved a spectral factorization of the power
spectrum of the process, whereas the second derived the model through a succession of
all-pole models.

Before concluding this chapter it should be pointed out that an important problem in
signal modeling has been, to this point, overlooked. This is the problem of model order

202 SIGNAL MODELING

estimation. In each case that we have considered thus far, we have assumed that a model of
a given order was to be found. In the absence of any information about the correct model
order, it becomes necessary to estimate what an appropriate model order should be. As one
might expect, misleading information and inaccurate models may result if an inappropriate
model order is used. At this point, however, we will simply note that although a number
of different model order estimation techniques are available, all of them are somewhat
limited in terms of their robustness and accuracy (A more detailed discussion of model
order estimation may be found in Chapter 8).

References

1. B. S. Atal and J. R. Remda, “A new model of LPC excitation for producing natural-sounding
speech at low bit rates,” Proc. IEEE Int. Conf. on Acoust., Speech, Sig. Proc., Paris, pp. 614-617,
May 1982.

2, F. Brophy and A. C. Salazar, “Considerations of the Padé approximant technique in the synthesis
of recursive digital filters,” IEEE Trans. Audio and Electroacoust, pp. 500-505, December 1973.

3. R. V. Churchill and J. W. Brown, Introduction to Complex Variables and Applications, 4th ed.,
McGraw-Hill, New York, 1984.

4. J. R. Deller, J. G. Proakis, and J. H. L. Hansen, Discrete-time Processing of Speech Signals,
MacMillan, New York, 1993.

5. J. Durbin, “Efficient estimation of parameters in moving-average models,” Biometrica, vol. 46,
pp. 306-316, 1959.

6. J. H. McClellan, “Parametric Signal Modeling,” Chapter 1 in Advanced Topics in Signal Process-
ing, Prentice-Hall, Englewood Cliffs, NJ, 1988.)

7. M. Morf, B. Dickenson, T. Kailath, and A. Vieira, “Efficient solution of covariance equations for
linear prediction,” JEEE Trans. Acoust., Speech, Sig. Proc., vol. 25, pp. 429-433, October 1977.

8. A.V.Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1989.

9. H. E. Padé, “Sur lareprésentation approchée d’une fonction par des fractions rationelles,” Annales
Scientifique de I’Ecole Normale Supérieure, vol. 9, no. 3 (supplement), pp. 1-93, 1992.

10. G. R. B. Prony, “Essai expémental et analytique sur les lois de la dilatabilité de fluides elastiques
et sur celles de la force expansion de la vapeur de I’alcool, a différentes températures,” Journal
de I’Ecole Polytechnique (Paris), vol. 1, no. 2, pp. 24-76, 1795.

11. L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, Englewood
Cliffs, NJ, 1978.

12. R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison Wesley, Reading, MA. 1987.

13. E. A.Robinson and S. Treitel, Geophysical Signal Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1980.

14. J. L. Shanks, “Recursion filters for digital processing,” Geophysics, vol. 32, pp. 33-51, February
1967.

15. K. Steiglitz and L. E. McBride, “A technique for the identification of linear systems,” IEEE Trans.
on Automatic Control, vol. AC-10, pp. 461-464, October 1965.

16. K. Steiglitz, “On the simultaneous estimation of poles and zeros in speech analysis,” IEEE Trans.
Acoust., Speech, Sig. Proc., vol. 25, pp. 229-234, June 1977.

17. C. W. Therrien, Discrete Random Signals and Statistical Signal Processing, Prentice-Hall, En-
glewood Cliffs, NJ, 1992.

18. W. F. Trench, “An algorithm for‘the inversion of finite Toeplitz matrices,” J. SIAM, vol. 12, no. 3,
pp. 512-522, 1964.

PROBLEMS 203

4.9 PROBLEMS

4.1. Find the Padé approximation of second-order to a signal x(») that is given by
x=[2,1,0,-1,0,1,0 —-1,0, 1, ...]
e, x(0) = 2, x(1) = 1, x(2) = 0, and so on. In other words, using an approximation of
the form
Dz7! + b(2)z72
Hz) = b(0) +b(1)z™" +b(2)z
1+a()z! +a(2)z2
find the coefficients b(0), b(1), b(2), a(l), and a(2).

4.2. A third-order all-pole Padé approximation to a signal x(n) has been found to be
1
142z71 427243273
What information about x (#) can be determined from this model?

H(z) =

4.3. Suppose that a signal x(r) is known to be of the form

L
x(n) =Y () u(n)
k=1

where the A,’s are distinct complex numbers.

(a) Show that the Padé approximation method can be used to determine the parameters ¢,
and A, fork =1,2,..., L. Is the answer unique?

(b) The first eight values of a signal x (n), which is known to be of the form given above
with L = 3, are
x = [32, 16, 8, 12, 18, 33, 64.5, 128.25]"
Determine ¢; and A, fork =1, 2, 3.

4.4. A consumer electronics device includes a DSP chip that contains a linear shift-invariant
digital filter that is implemented in ROM. In order to perform some reverse engineering on
the product, it is necessary to determine the system function of the filter. Therefore, the unit
sample response is measured and it is determined that the first eight values of A (r) are as
listed in the following table.

Unit sampleresponse

n | O 1 2 3 4 5 6 7

hn) [-1 2 3 2 1 2 0 1

Having no knowledge of the order of the filter, it is assumed that H(z) contains two poles
and two zeros.

(a) Based on this assumption, determine a candidate system function, H(z), for the filter.

(b) Based on the solution found in (a) and the given values for 4(n), is it possible to
determine whether or not the hypothesis about the order of the system is correct?
Explain.

204 SIGNAL MODELING

4.5. The Padé approximation models a signal as the response of a filter to a unit sample
input, 8(n). Suppose, however, that we would like to model a signal x (r) as the step response
of a filter as shown in the following figure

u(n) x(n)
"] Ho= B(2)
A(2)

In the following, assume that H(z) is a second-order filter having a system function of the
form

Hip = PO+ 5@
A = Y a) +a@)z2

(a) Using the Padé approximation method with a unit step input, derive the set of equations
that must be solved so that

x(n) =x(n) for n=0,1,...4
(b) If the first eight values of x(n) are

x=[1,0,2 -1,201,2]
find 5(0), b(1), b(2), a(1), and a(2).
4.6. With a real-valued signal x(n) known only forn = 0,1, ..., N, the backwards co-

variance method finds the coefficients of the all-pole model that minimize the backward
prediction error

N
£ =7 le;mF
n=p
where
P
e, (M) =x(n—p)+ Y apk)x(n+k— p)
k=1

(a) Show that the coefficients a,(k) that minimize £ » satisfy a set of normal equations of
the form

Rxép = —TIy
where
8, = [a,(), a,@).a(p)]

and find explicit expressions for the entries in R, and r,.

(b) Is the solution to the backwards covariance method the same as the solution to the
covariance method? Why or why not?

(c) Consider a new error that is the sum of the forward and backward prediction errors,

N
&8 = fie;mP + 1, 1)
n=p

PROBLEMS 205

where e, (n) is the backwards prediction error defined above, and e;,“ (n) is the forward
prediction error used in the covariance method,

P
ey(n) = x(n) + kz;ap(k)x(n -k

Derive the normal equations for the coefficients that minimize Elf. (This approach is
known as the Modified Covariance Method.)

(d) Consider the signal
xm)y=8" ; n=0,1,...,N

With p = 1 find the first-order all-pole model that minimizes £ ,f and determine the

value of £ ,f. For what values of 8 is the model stable? What happens to the model and
the modeling error as N — 0o0?

4.7. Suppose that we would like to derive a rational model for an unknown system S using
the approach shown in the following figure,

x(n) y(n)

e(n)
> S > A(2) +< -

%

e B(2) -—

For a given input x(n) the output of the system, y(n), is observed. The coefficients of the
two FIR filters 4(z) and B(z) that minimize the sum of the squares of the error signal e(n)
are then to be determined. Assume that the sum is for all n > 0 as in Eq. (4.73).

(a) Derive the normal equations that define the optimal solution for the coefficients of A(z)
and B(z).

(b) The philosophy of this method is that if the error is small then B(z)/A(z) is areasonable
model for S. Suppose that S is a linear shift-invariant system with a rational system
function. Show that this method will identify the parameters of S exactly assuming that
the orders of the filters A(z) and B(z) are chosen appropriately [15].

4.8. Consider a signal, x(n), which is the unit sample response of a causal all-pole filter
with system function
1
(1405271 4+ 0.75z-H)(1 + 2z71)
We observe x(n) over the interval 0 < n < N where N > 1.

H(z) =

(a) Using the covariance method, we determine a third-order all-pole model for x(n).
What, if anything, can you say about the location of the poles in the model? Do the pole
locations depend on N? If so, where do the poles go as N — 00?

(b) Repeat part (a) for the case in which you use the autocorrelation method.

4.9. Equation (4.129) may be used to reduce the amount of computation required to set-up
the covariance normal equations.

206 SIGNAL MODELING

(a) Show that the elements along the main diagonal may be computed recursively beginning
with 7.(1, 1).

(b) Show how the elements along the lower diagonals may be computed recursively begin-
ning with r,(k, 1). How may the terms along the upper diagonals be obtained?

(c) Determine how many multiplies and adds are necessary to set-up the covariance normal
equations (do not forget the evaluation of the vector on the right-hand side).

4.10. We want to model a signal x(n) using an all-pole model of the form

P
1 4+z=¥ |:Z a,,(k)z""]
k=1

For example, with p = 2 the model is

b(0)
1 +a(l)z=¥=1 +a(2)z~V-2
Derive the normal equations that define the coefficients a,, (k) that minimize the Prony error

Ep=)_lem

n=0

H(z) =

where
p
e(n) =x(m) + Y _ap(Dx(n —1—N)
I=1

and derive an expression for the minimum error.

4.11. Suppose that we would like to model a signal x(n) as shown in the following figure.

5(n) X(n)

Hz) p——

Y

where h(n) is an all-pole filter that has a system function of the form

b(0)
p

1+) a,(kz
k=1

H(z) =

Modify the Prony normal equations so that one can determine the coefficients a, (k) in H(z)
from a sequence of signal values, x (n).

4.12. Suppose that we would like to model a signal x (r) that we believe to be quasiperiodic.
Based on our observations of x(n) we estimate the autocorrelations through lag £ = 10 to
be

rek) =[1.0, 0.4, 0.4, 0.3, 0.2, 0.9, 0.4, 0.4, 0.2, 0.1, 0.7]"

(a) In formulating an all-pole model to take into account the suspected periodicity let us

PROBLEMS 207

consider a two-coefficient model of the form
b(0)
14+a(5)z73 +a(10)z10

Find the values for the coefficients a(5) and a(10) that minimize the all-pole modeling
€erTor.

H() =

(b) Compare the error obtained with the model found in (a) to the error that is obtained
with a model of the form

b(0)
“1+a)z ' +a@)z2
(c) Now consider an all-pole model of the form

b(0)
T T+aN)zV

where both a (N) and N are considered to be model parameters. Find the value for a(N)
and N that minimize the all-pole modeling error and evaluate the modeling error.

H(z)

H(z)

4.13. We would like to build a predictor of digital waveforms. Such a system would form an
estimate of a later sample (say no samples later) by observing p consecutive data samples.
Thus we would set

P
R(n+no) =) ap(k)x(n — k)

k=1
The predictor coefficients a, (k) are to be chosen to minimize

&= Z[x(n +n9) — £(n + o))’
n=0

(a) Derive the equations that define the optimum set of coefficients a, (k).

(b) If np = 0, how is your formulation of this problem different from Prony’s method?
4.14. You are told that it is always possible to determine whether or not a causal all-pole
filter is stable from a finite number of values of its unit sample response. For example, if
H(z) is a pth-order all-pole filter, given #(n) forn = 0, 1, ..., N, then the stability of H(z)

may be determined. If this is true, explain the procedure and list any conditions that must
'be placed on p or N. If false, explain why it cannot be done.

4.15. Let H(z) be a first-order model for a real-valued signal x(n),

)
HE = =
and let
N-1
Ers =Y _[x(n) — h(mP
n=0

be the error that is to be minimized. By setting the derivatives of £, with respect to b(0)
and a(1) equal to zero, try to find an analytic solution for the values of 5(0) and a(1) that
minimize &, 5. (This problem illustrates how difficult the direct method of signal modeling
may be, even for a first-order model.)

208 SIGNAL MODELING

4.16. We have a signal x(r) for which we would like to obtain an all-pole model of the
form

_ 5(0)

T 14 a(l)z' +aR)z2

Using the autocorrelation method, find explicit formulas for 5(0), a(1), and a(2) in terms
of r,(0), r. (1), and r, (2).

H(z)

4.17. If one is modeling a signal x(n) whose transform, X(z), contains zeros, then an
all-pole model may be used to effectively model a zero with an infinite number of poles.
In this problem we look at how a zero is modeled with the autocorrelation method. Let
x(n) =8(n) —ad(m — 1) where |a| < | and « is real.

(a) Determine the pth-order all-pole model 4,(z) for x(n) where p is an arbitrary positive
integer, and find the value of the squared error &,.

(b) For the all-pole model determined in part (a), what is the limit of 4,(z) as p — 00?
What does £, converge to as p — 00? Justify your answers.

(c) Repeat parts (a) and (b) for || > 1.

4.18. Find a closed-form expression for the FIR least squares inverse filter of length N for
each of the following systems.

1
LG)=—— ; Jal<l.
1-oaz!
2. G(z)=1-z"".
_
3.6)=2"% _ . o<1
1 -az!

4.19. An important application of least squares inverse filtering is deconvolution, which is
concerned with the recovery of a signal d(n) that has been convolved with a filter g(n)

x(n) =d(n) * g(n)

The problem is to design a filter 4y (n) that may be used to produce an estimate of d(n)
from x(n),

cf(n) =xn)xhyn)

One of the difficulties, however, is that noise in the observed signal may be amplified by
the filter. For example, if we observe

Y(m) = d(n) * g(n) + v(n)
then the filtered observations become
y(n) x hy(n) = d@n) +v(n) x hy(@n) = d(n) + u(n)
where
un) =v(n) xhyn)

is the filtered noise. One way to reduce this noise is to design a least squares inverse filter
that minimizes

£=Ylem|* + rE{lum)*}
n=0

PROBLEMS 209

where

e(n) = 8(n — ng) — hy(n) * g(n)

and A > 0 is a parameter that is to be selected. Note that for large values of A, minimizing
£ will force a large reduction in the filtered noise at the expense of a decrease in resolution,
i.e., larger e(n), whereas smaller values of A lead to higher resolution and larger noise.

(a) Assume that v(n) is zero-mean white noise with a variance o'2. Show that
E{lu(m)*} = o hihy
where hy is a vector containing the coefficients of the filter 4y (n).
(b) Derive the normal equations that result from minimizing the error
& =ee+rolhfhy
where e = [e(O), e(D), .. .]T, and show that they may be written in the form
(Rg + aI)hN =g

where o > 0 is a prewhitening parameter that depends upon the values of A, and g is
the vector on the right-side of Eq. (4.101).

4.20. We are given a signal, x(n), that we want to model as the unit sample response of an
all-pole filter. We have reason to believe that the signal is periodic and, consequently, the
poles of the model should lie on the unit circle. Thus, assuming a second-order model for
the signal, the system function is constrained to have the form

_ b(0)
T l4+a(l)z' +z2

With |a(1)] < 2 this model produces a pair of poles on the unit circle at an angle 6 defined
by

H(z)

2cosf = —a(l)

(a) Using the autocorrelation method, derive the normal equations that define the value of
a(1) that minimizes the error

o0
Ep =) €n)
n=0
(b) Find an expression for the minimum error, {£, }min-

4.21. Voiced speech may be modeled as the output of an all-pole filter driven by an impulse
train

K
Pro(n) =) _8(n — kno)
k=1
where the time between pulses, ng, is known as the pitch period. Suppose that we have
a segment of voiced speech and suppose that we know the pitch period, no. We extract a
subsequence, x(n), of length N = 2n(and model this signal as shown in the following
figure

210 SIGNAL MODEUNG

Py (1) b(0) £(n)
14+ 30 a,tk)z*

where the input, p,, (n), consists of two pulses,
Pno(n) = 38(n) + 8(n — no)

Find the normal equations that define the coefficients a, (k) that minimize the error

N
& = Z e*(n)
n=0

where

e(n) = a,(n) * x(n) — b(n) * py,(n)
and b(n) = b(0)é(n).
4.22. You would like to design a linear predictor of a signal x(»n) but, due to hardware

constraints, are limited to a two-tap predictor. However, since delays can be tolerated in the
predictor, you decide to design a predictor of the form

x(n)y=a)x(n — N1) +a@)x(n — Ny)

where N, and N; are positive integers. The goal is to find the values of a(1), a(2), N, and
N, that minimize the mean-square error E{e?(n)} where

e(n) = x(n) — x(n)

Assuming that x(n) is a zero mean wide-sense stationary process, you estimate the auto-
correlation of x(n) and find that the values of r, (k) for k = 0,1,...,7 are as given in
the following table. For £ > 7, it is determined that the autocorrelation is approximately
zero.

Autocorrelation values

k 0 1 2 3 4 5 6 7

rk |10 —-01 00 -05 —-02 06 02 02

(a) If you were to design an optimum predictor of the form x(n) = a(l)x(n — 1), what
would be the mean-square error in your prediction of x (#)? What about for the predictor
x(n) =a(l)x(n —3)?

(b) Derive a general expression for the minimum mean-square error for a predictor of the
form £(n) = a(1)x(n — N)) with your expression given only in terms of , (k). What
value of N; minimizes the mean-square error?

(c) Find the values of a(l), a(2), Ni, and N; in the two-coefficient linear predictor defined
above that minimize the mean-square error E{e?(n)}.

(d) Find the value for the mean-square prediction error for your predictor designed in
part (c).

COMPUTER EXERCISES 211

4.23. If r.(0) = 1, r,(1) = 0.5, and r(2) = 0.75, find the values of a(1), a(2), and 5(0)
in the following AR(2) model for x (n),

x(ny+ax(n — D +a@x(n —-2) =bO)wn)
where w(n) is unit variance white noise.

4.24. Use the method of spectral factorization to find a moving average model of order 2
for a process whose autocorrelation sequence is

r.=[3 15 1]"
4.25. Suppose that the first five values in the autocorrelation sequence for the process x (1)
are
r. =[3, 9/4, 9/8, 9/16, 9732 ...]"
(a) Use the modified Yule-Walker equation method to find an ARMA(1,1) model for
x(n).

(b) Are the given values in the autocorrelation sequence consistent with the model that you
found in part (a)?

Computer Exercises

C4.1. In this problem, you are to consider the design of lowpass filters using the Padé and
Prony methods.

(a) Suppose you would like to design a lowpass filter with a cutoff frequency &, = /2.
Using the Padé approximation with p + ¢ + 1 = 20, compare the designs that result
when p =0,2,4,...,20. Which design is the best? (Note: one of the parameters that
you will need to experiment with in your design is the delay, ng, of the ideal unit sample
response.)

(b) Repeat part (a) for a narrowband lowpass filter that has a cutoff frequency w. = 7 /16.
Which design is the best and how do these filters compare to those designed in part (a)?

(c) Repeat part (a) using Prony’s method and compute the minimum error €, , for each
filter. Which filter is the best? Compare your designs to those obtained using Padé
approximation.

(d) Using the m-file el1lip.m in the Signal Processing Toolbox, design a tenth-order
elliptic lowpass filter with a cutoff frequency w. = /2, and evaluate the Prony error.
Compare this filter to the best Prony filter found in part (c) and explain what you observe.

C4.2. We have seen that the direct method of signal modeling leads to a set of nonlinear
equations that need to be solved for the model coefficients. Iterative prefiltering, however,
is an approach that may be used to avoid having to solve these nonlinear equations. In this
exercise we look at the method of iterative prefiltering and compare it to Prony’s method.
(a) Let
1—-0.9z"" 40.81z72
1—1.978z"! + 2.853z-2 — 1.877z3 4-0.9036z~*

be the system function of a linear shift-invariant system. Generate the first 100 samples
of the unit sample response 4(n) of this filter.

H(z) =

212 SIGNAL MODELING

(b) Using the method of iterative prefiltering, find a two-zero, four-pole model for 4 (n).
How many iterations are required for the coefficients to converge? What happens if
h(n) is over-modeled using p = ¢ = 4? What about p = g = 5?

(c) The model found in part (b) assumes exact measurements of the unit sample response
h(n). Suppose that the measurements of 4(rn) are noisy and you observe

y(n) = h(n) +v(n)

where v(n) is white Gaussian noise with a variance 2. Repeat part (b) using these
noisy measurements with o2 = 0.0001, 0.001, 0.01. Comment on the accuracy of your
models and the sensitivity of the coefficients to the noise variance.

(d) Repeat parts (b) and (c) using Prony’s method and compare your results with those
obtained using iterative prefiltering. Which method works the best?

C4.3. In this problem, we look briefly at the problem of deconvolution using FIR least
squares inverse filters. Suppose that we have recorded a signal, y(n), that is known to have
been blurred by a filter having a unit sample response

o) = { cos(0.2[n — 25]) exp{—0.01[n — 251’} ; 0<n <50

0 ; otherwise

The signal that is to be recovered from y(n) is a sequence of impulses,

10
x(n) = Zx(k)&(n —ny)
k=1

where the values of x(k) and n; are as listed in the following table.

ne |25 40 55 65 85 95 110 130 140 155

xtk) {1 08 07 05 07 02 09 05 06 03

(a) Make a plot the observed signal y(n) = g(n) * x(n) and determine how accurately the
amplitudes and locations of the impulses in x (#n) may be estimated by simply looking
at the peaks of y(n).

(b) Using the m-file spike.m, design the least squares inverse filter Ay (n) of length
N = 50 that has the optimum spiking de¢lay.

(c) Filter y(n) with your optimum spiking filter and plot the output of the filter X(n) =
hy(n) * y(n). What are your estimated values for the amplitudes and locations of the
impulses in x(n)?

(d) Your results in part (c) assume noise-free observations of y(n) = g(n) * x(n). Suppose
these measurements are noisy,

y(n) = gn) *x(n) +v(n)

where v(n) is white Gaussian noise with variance ovz. Repeat part (c) using y(n) with
02 = .0001 and 62 = .001 and comment on the accuracy of your estimates of x (k)
and ny.

COMPUTER EXERCISES 213

©

®

As discussed in Problem 4.19, the effect of measurement noise may be reduced by
incorporating a prewhitening parameter a in the design of the least squares inverse
filter. Write a MATLAB m-file or modify spike .m to allow for noise reduction in the
least squares inverse filter design. Using this m-file, repeat your experiments in part (d)
using different values for the prewhitening parameter. Comment of the effectiveness of
« in reducing the noise. What values for « seem to work the best?

Your results in parts (b) and (c) assume perfect knowledge of g(n). Repeat the design of
your least squares inverse filter assuming that g(n) has been measured in the presence
of noise, i.e., you are given

&(n) = g(n) + w(n)

where w(n) is white noise that is uniformly distributed between [—.005, .005]. Filter
y(n) with your optimum spiking filter and plot the output of the filter yx(n) = hy(n) *
y(n). How accurate are your estimates of the amplitudes and locations of the impulses
in x(n)?

C4.4. In this exercise, we consider the problem of finding a moving average model for a
signal x (n).

(2

(b)

©

(@

©

In Fig. 4.22 is an m-file to find the moving average coefficients b, (k) of a process x(n)
using Durbin’s method. Write an m-file to find these coefficients using the method of
spectral factorization.

Generate N = 256 samples of the process
x(n) = wn) + 09wk - 2)

where w(n) is unit variance white Gaussian noise. Using the method of spectral factor-
ization, find a second-order moving average model for x (n).

Repeat part (b) using Durbin’s method. Compare your results with the method of spectral
factorization and discuss how the accuracy of your model is affected by the order of
the all-pole model used in the first step of Durbin’s method.

Modify the m-file Gurbin.m by replacing the autocorrelation method in the second
step of Durbin’s method with the covariance method. Find a second-order moving
average model for x (n) and compare your results with those obtained in part (b). Repeat
for other moving average processes and discuss your findings.

Replace the autocorrelation method in both steps of Durbin’s method with the covari-
ance method and repeat part (d).

C4.5. Inthis exercise, we consider the problem of finding an autoregressive moving average
model for a process x (n).

(a)

(b)

Write an m-file to find an ARMA(p, ¢) model for a process x(n) using the modified
Yule-Walker equation method, given the autocorrelation sequence r, (k).

Generate 100 samples of an ARMA(4,2) process x (n) by filtering unit-variance white
Gaussian noise with

1 —-.9z27! +0.81z22
1—1.978z"! +2.853z72 — 1.877z~% + 0.904z4
and make a plot of the power spectrum of x (n).

H(z) =

214 SIGNAL MODELING

(c) Using your m-file for the modified Yule-Walker equation method in part (a), find an
ARMA(4,2) model for x (n). Compare your model with the coefficients of H(z). Repeat
for ten different realizations of the process x(n) and examine the consistency of your
model coefficients. Are your estimates of a,(k) and b, (k) close to the correct values,
on the average? How much variation is there from one realization to the next?

THE LEVINSON
RECURSION

5.1 INTRODUCTION

In Chapter 4, we saw that several different signal modeling problems require finding the
solution to a set of linear equations of the form

R, =b 5.1

where R, is a Toeplitz matrix. In the Padé approximation method, for example, the denom-
inator coefficients a, (k) which are represented by the vector a,, are found by solving a set
of Toeplitz equations of the form (5.1) where R, is a non-symmetric Toeplitz matrix con-
taining the signal values x(q), x(¢ + 1), ..., x(g + p — 1) in the first column and the signal
values x(g), x(q — 1), ..., x(g — p + 1) in the first row. In addition, the vector b contains
the signal values x(q + 1), x(q¢ + 2), ..., x(g + p) and is therefore tightly constrained by
the values in the matrix R,. A similar set of linear equations is also found in the modified
Yule-Walker equations used in modeling an ARMA process. We saw that Toeplitz equa-
tions also arise in all-pole modeling of deterministic signals using either Prony’s method
or the autocorrelation method and in all-pole modeling of stochastic processes using the
Yule-Walker method. Unlike the Padé approximation, however, in these cases R, is a Her-
mitian Toeplitz matrix of autocorrelation values r,(0), r,(1), ..., r.(p — 1). In addition,
since b = —[r.(1),..., rx(p)]T, the vector on the right side of Eq. (5.1) is again tightly
constrained by the values in the Toeplitz matrix R,. In Shanks’ method for finding the
numerator coefficients, we again find a set of Hermitian Toeplitz equations. In this case,
however, unlike the previous examples, the vector b is not constrained by the values in the
matrix R,. In Chapter 7, Toeplitz equations will again be encountered when we consider
the design of FIR Wiener filters. As in Shanks’ method, R, will be a Hermitian Toeplitz
matrix but the vector b will be, in general, independent of the values in R, .

Due to the importance of solving Toeplitz equations in a variety of different problems,
in this chapter, we look at efficient algorithms for solving these equations. In the process of
deriving these algorithms, we will also discover a number of interesting properties of the
solutions to these equations and will gain some insight into how other approaches to signal
modeling may be developed. We begin, in Section 5.2, with the derivation of the Levinson-
Durbin recursion. This recursion may be used to solve the Prony all-pole normal equations
and the autocorrelation normal equations. The Levinson-Durbin recursion will also lead us

216 THE LEVINSON RECURSION

to several interesting results including the lattice filter structure, the Schur-Cohn stability
test for digital filters, the Cholesky decomposition of a Toeplitz matrix, and a procedure
for recursively computing the inverse of a Toeplitz matrix. In Section 5.3, we develop the
Levinson recursion for solving a general set of Hermitian Toeplitz equations in which the
vector b is unconstrained. The Levinson recursion may be used in Shanks’ method, and
it may be used to solve the general FIR Wiener filtering problem developed in Chapter 7.
Finally, in Section 5.4 we derive the split Levinson recursion. This recursion is slightly more
efficient than the Levinson-Durbin recursion and introduces the idea of singular predictor
polynomials and line spectral pairs that are of interest in speech processing applications.

5.2 THE LEVINSON-DURBIN RECURSION

In 1947, N. Levinson presented a recursive algorithm for solving a general set of linear
symmetric Toeplitz equations R,a = b. Appearing in an expository paper on the Wiener
linear prediction problem, Levinson referred to the algorithm as a “mathematically trivial
procedure” [16]. Nevertheless, this recursion has led to a number of important discoveries
including the lattice filter structure, which has found widespread application in speech
processing, spectrum estimation, and digital filter implementations. Later, in 1961, Durbin
improved the Levinson recursion for the special case in which the right-hand side of the
Toeplitz equations is a unit vector [7]. In this section we develop this algorithm, known as
the Levinson-Durbin recursion. In addition, we will explore some of the properties of the
recursion, show how it leads to a lattice filter structure for digital filtering, and prove that
that the all-pole model derived from the autocorrelation method is stable.

5.2.1 Development of the Recursion

All-pole modeling using Prony’s method or the autocorrelation method requires that we
solve the normal equations which, for a pth-order model, are

P
re)+ Y ayrk =D =0 ; k=12,....p (5.2)
=1
where the modeling error is
p
€p =re(0) + Y _a,(Hre(l) (53)
=1
Combining Egs. (5.2) and (5.3) into matrix form we have
@ ril) i@ - rip) 1 1
re(1) rx(0) e eeorg(p— 1D ap(1) 0
r«(2) re(1) r«(0) e ri(p—12) ap(z) =¢p 0 5.4)
R rp-1D rp-2 - n© [ap 0

which is a set of p + 1 linear equations in the p 4 1 unknowns a, (1), a,(2), ..., ap(p) and
€p. Equivalently, Eq. (5.4) may be written as

Rpap = Gpul (55)

THE LEVINSON-DURBIN RECURSION 217

where R, is a (p + 1) x (p + 1) Hermitian Toeplitz matrix and u; = [1,0,..., 01" isa
unit vector with 1 in the first position. In the special case of real data, the R, is a symmetric
Toeplitz matrix.

The Levinson-Durbin recursion for solving Eq. (5.5) is an algorithm that is recursive in
the model order. In other words, the coefficients of the (j + 1)st-order all-pole model, a;,
are found from the coefficients of the j-pole model, a;. We begin, therefore, by showing
how the solution to the jth-order normal equations may be used to derive the solution to
the (j + 1)st-order equations. Let a;(i) be the solution to the jth-order normal equations

re(0y i) i e 7y 1 €
re(ly rx(0) ey e G =D a;(1) 0
ry(2) ry(1) r.(0) r;(.]_z) a/(z) = 0 5.6)
() (G=D rn(G=2) - (0 a;(j) 0

which, in matrix notation is
R;a; = ¢juy o7
Given a;, we want to derive the solution to the (j + 1)st-order normal equations,
Rjj1a41 = €j1w (5.8)

The procedure for doing this is as follows. Suppose that we append a zero to the vector a;
and multiply the resulting vector by R, . The result is

rx(0) ry(D) @ o orG) rGHD] 1 €
re(1) r.(0) ri(ly oG- ri(p) a;j(1) 0
r«(2) ry(1) @ (=2 (G- D a;(2) 0
: : : : : =] 69
rxij) (G=1 r(G=2) -+ r(0) re(1) a;(j) 0
| G+ D () n(G=D - (D @ JL 0 | L
where the parameter y; is
J
yi=ri+ D+ air(j+1-i) (5.10)
i=1

Note that if y; = 0, then the right side of Eq. (5.9) is a scaled unit vector and a;; =
[1,a;(1),...,a;(j), 0]7 is the solution to the (j + l)st-order normal equations (5.8). In
general, however, y; # 0 and [1, a; (1), ..., 4;(j), 0]7 is not the solution to Eq. (5.8).

The key step in the derivation of the Levinson-Durbin recursion is to note that the
Hermitian Toeplitz property of R, allows us to rewrite Eq. (5.9) in the equivalent form

[(0 re(1) re2) oo () GG+ D] 0 [y
ry(l) ry (0) re() e (G () a;(j) 0
r¥(2) r¥(l) @ (=2 (G—=D||ag(j—-1 0
) =| .1 .11
() G =D ri(=2) -+ r(0) rx(1) a;(1) 0
G+ G G- o 0 JL 1] Leid

218 THE LEVINSON RECURSION

Taking the complex conjugate of Eq. (5.11) and combining the resulting equation with
Eq. (5.9), it follows that, for any (complex) constant I,

mo1 T 0) Te] My]
aj(l) af(]) 0 0
a;(2) a1 0 0
Rj1 : + T : = . [+D0n]| . (5.12)
a;(j) az (1) 0 0
| 0 | i 1 | | Vi i e}‘ |

Since we want to find the vector a;;; which, when multiplied by R; 1, yields a scaled unit
vector, note that if we set

My =-2 (5.13)

*
J

then Eq. (5.12) becomes

Rjti1aj41 = €j11my

where
- - _ 0 -
a;(1) a(j)
a;(2) ai(j—1
Ay = : + Fj+] . (514)
a;(j) az(1)
which is the solution to the (j + 1)st-order normal equations. Furthermore,
601 =6 + Ty =¢[1 = Tjul?] (5.15)

is the (j + 1)st-order modeling error.' If we define a;(0) = 1 and a;(j + 1) = O then
Eq. (5.14), referred to as the Levinson order-update equation, may be expressed as

g =a() +TjnalG—i+1D 5 i=01,...j+1 (5.16)

All that is required to complete the recursion is to define the conditions necessary to initialize
the recursion. These conditions are given by the solution for the model of order j = 0,

ap(0) =1
€ = r.(0) 5.17)

In summary, the steps of the Levinson-Durbin recursion are as follows. The recursion is
first initialized with the zeroth-order solution, Eq. (5.17). Then, for j =0,1,...,p — 1,
the (j + 1)st-order model is found from the jth-order model in three steps. The first step
is to use Eqgs. (5.10) and (5.13) to determine the value of I';;;, which is referred to as

ISince ¢; is real, then the complex conjugate in Eq. (5.13) may be dropped.

THE LEVINSON-DURBIN RECURSION 219

Table 5.1 The Levinson-Durbin Recursion

1. Initialize the recursion
@ a0 =1
(b) € =r.(0)
2. Forj=0,1,....,p—1
@ y=rG+D+Xa@OnG—i+1)
) Tin=-y/e
(¢ Fori=1,2,...,j
ain()=a;)+Tna/(j—i+1)
d an(+1)=Tp
© g =1~ Il
3. b(0) = fe,

the (j + 1)st reflection coefficient. The next step of the recursion is to use the Levinson
order-update equation to compute the coefficients a;, (i) from g;(i). The final step of the
recursion is to update the error, ¢;, {, using Eq. (5.15). This error may also be written in two
equivalent forms that will be useful in later discussions. The first is

j+1
i1 =[1 = 0] =r O] J[1- 117 (5.18)
i=1
and the second, which follows from Eq. (5.3), is
J+!
€ja1 =re(0) + D a1 (@)re(i) (5.19)
i=l

The complete recursion is listed in Table 5.1 and a MATLAB program is given in Fig. 5.1.2

Example 5.2.1 Solving the Autocorrelation Normal Equations

Let us use the Levinson-Durbin recursion to solve the autocorrelation normal equations and
find a third-order all-pole model for a signal having autocorrelation values

r0) =1, r,(1)=05, r(2) =05, ry3)=025

The normal equations for the third-order all-pole model are

1 05 05 as(1) 0.5
05 1 05 az(2) |=—| 0S5
05 05 1 a3(3) 0.25

Using the Levinson-Durbin recursion we have

2The convention used in the Levinson-Durbin recursion varies a bit from one author to another. Some authors, for
example, use —["; 41 in Eq. (5.12), while others use I‘j’.* E This results, of course, in different sign conventions for

Fj+|.

220 THE LEVINSON RECURSION

The Levinson-Durbin Recursion

function [a,epsilon]=rtoal(r)
%
r=r(:);
p=length(r)-1;
a=1;
epsilon=r(1);
for j=2:p+1;
gamma=-r(2:j) ' *flipud(a) /epsilon;
a=[a;0] + gamma*(0;conj(flipud(a))l];
epsilon=epsilon* (1 - abs(gamma)"2);
end

Figure 5.1 A MATLAB program for solving a set of Toeplitz equations using the Levinson-Durbin Re-
cursion. This m-file provides a mapping from the autocorrelation sequence r,. (k) to the filter coefficients
a,(k), hence the name rtoa.

1. First-order model:
Yo =1 (1)
vo _ rm()

MN=-—= =-1;
'T T RO 2

weln =[]

n=r@+a(Dre(l) =1

6 =r (01 -T?]=3

and

2. Second-order model:

Mr=-p/a=-} ; e=e[l-T3]=3
and
1 0 1
a=| —1/2 |-1/3| —-1/2 |=]| —-1/3
0 1 —1/3

3. Third-order model: i
1=r03)+ a2 + e = -3

Di=-pla=3 ; a=[l-T3 =4
and
1 0 1
I SV T N O SV W N Q7
B= s [Ty 13 [T -38
0 1 1/8

Finally, with
1
b(0) = Jez = §V42

THE LEVINSON-DURBIN RECURSION 221

the all-pole model becomes

V42/8
H3(z)=1~§_l_g_z 1,3

Having found the third-order all-pole model for x(n), let us determine what the next
value in the autocorrelation sequence would be if H;(z) were the correct model for x(n),i.¢.,
if x(n) is the inverse z-transform of H;(z). In this case, the model will remain unchanged
fork > 3,i.e., I'y = 0 and, therefore, y, = O for k > 3. Thus, it follows from Eq. (5.10) by
setting j = 3 that

3
P+ Y a3 4 —i) =0
i=1
which may be solved for r,(4) as follows
3
re@) == as(Dr(d—i)=7/32
i=1

Successive values of r, (k) may be determined in a similar fashion. For example, if k > 4,
then

3
re(k) ==Y as(i)re(k — i)

i=l

which are the Yule-Walker equations for an AR(3) process.

It follows from our discussions in Section 3.6.2 of Chapter 3 that if white noise with a
variance of o2 is filtered with a first-order all-pole filter

e

then the output will be an AR(1) process with an autocorrelation sequence of the form

o2

rek) = o

In the following example, the Levinson-Durbin recursion is used to find the sequence of
reflection coefficients I'; and model errors ¢, that are associated with this process.

Example 5.2.2 The Reflection Coefficients for an AR(1) Process

Let x(n) be an AR(1) process with an autocorrelation

2
w

—® [l,a,a?, ...,
1 —a?

To find the reflection coefficients associated with this vector of autocorrelations we may
use the Levinson-Durbin recursion as follows. Initializing the recursion with

re =

2
T

1—a?

a=1 ; e=rn0)=

222 THE LEVINSON RECURSION

it follows that the first reflection coefficient is
AV
'x (0)

l =
and that

61=60[1~F12]=0'uz)

(2]

i=ri(2)+ai(Dr(1) =0

Thus, for the first-order model

For the second-order model

and

— . — — 2
FZ_O 5 € =€ =0,

so the coefficients of the model are
1

a; = -

0

Continuing, we may show by induction that I'; = Oand ¢; = o2 for all j > 1. Specifically,
suppose that at the jth step of the recursion I'; = 0 and

a=[l, -, 0,..., 017

Since
J
yi=rG+ D+ aiinG —i+ 1D =r(+1)—ar())
i=l

we see from the form of the autocorrelation sequence that y; = 0. Therefore, I'; 1 = 0 and
a;4 is formed by appending a zero to a; and the result follows. In summary, for an AR(1)
process,

T, =[-00,...,0]

We now look at the computational complexity of the Levinson-Durbin recursion and
compare it to Gaussian elimination for solving the pth-order autocorrelation normal equa-
tions. Using Gaussian elimination to solve a set of p linear equations in p unknowns,
approximately % p? multiplications and divisions are required. With the Levinson-Durbin
recursion, on the other hand, at the jth step of the recursion 2j + 2 multiplications, 1 divi-
sion, and 2 + 1 additions are necessary. Since there are p steps in the recursion, the total

THE LEVINSON-DURBIN RECURSION 223

number of multiplications and divisions is®
p—1
> @i+3)=p"+2p
=0
and the number of additions is
p-1
Y @i+ =p
j=0

Therefore, the number of multiplications and divisions is proportional to p? for the Levinson-
Durbin recursion compared with p* for Gaussian elimination. Another advantage of the
Levinson-Durbin recursion over Gaussian elimination is that it requires less memory for
data storage. Specifically, whereas Gaussian elimination requires p> memory locations, the
Levinson-Durbin recursion requires only 2(p + 1) locations: p + 1 for the autocorrelation
sequence 7,(0), ..., rz(p), and p for the model parameters a,(1), ..., a,(p), and one for
the error €.

In spite of the increased efficiency of the Levinson-Durbin recursion over Gaussian
elimination, it should be pointed out that solving the normal equations may only be a small
fraction of the total computational cost in the modeling process. For example, note that
for a signal of length N, computing the autocorrelation values r,(0), ..., r.(p) requires
approximately N (p + 1) multiplications and additions. Therefore, if N > p, then the
cost associated with finding the autocorrelation sequence will dominate the computational
requirements of the modeling algorithm.

5.2.2 The Lattice Filter

One of the by-products of the Levinson-Durbin recursion is the lattice structure for digital
filters. Lattice filters are used routinely in digital filter implementations as a result of a
number of interesting and important properties that they possess. These properties include
a modular structure, low sensitivity to parameter quantization effects, and a simple method
to ensure filter stability. In this section, we show how the Levinson order-update equation
may be used to derive the lattice filter structure for FIR digital filters. In Chapter 6, other
lattice filters structures will be developed, including the all-pole lattice and the pole-zero
lattice filters, and it will be shown how these filters may be used for signal modeling.

The derivation of the lattice filter begins with the Levinson order-update equation given
in Eq. (5.16). First, however, it will be convenient to define the reciprocal vector, denoted
by af , which is the vector that is formed by reversing the order of the elements in a; and
taking the complex conjugate,

i 1] [e ()]
a;(1) @G =1
4@ aG-2 |
4G =1 a; (1)
a;i(j) L 1 i

3Recall the summations given in Table 2.3, p. 16.

224 THE LEVINSON RECURSION

or,
af(i) = a}(j — i) (5.20)
fori = 0,1,...,j. Using the reciprocal vector in the Levinson order-update equation,
Eq. (5.16) becomes
aj+1() = a;()) + Tjpaf i — 1) (5.21)

With A;(z) the z-transform of a;(i) and A f (2) the z-transform of the reciprocal sequence
af (i), it follows from Eq. (5.20) that A;(z) is related to Af (z) by

ARy =77 AT(1/2) (5.22)

Rewriting Eq. (5.21) in terms of A;(z) and A f (2) gives

Ajin(2) = Aj(@) + iz 'Af () (5.23)
which is an order-update equation for A;(z).

The next step is to derive an order-update equation for aﬁr] (i)and A f+1 (2). Beginning

with Eq. (5.21), note that if we take the complex conjugate of both sides of the equation
and replace i with j —i + 1, we have

anG—i+)=al(—i+1D+T,a0) (5.24)

Incorporating the definition of the reversed vector, Eq. (5.20), into Eq. (5.24) gives the

. . R .
desired update equation for a; , (1),

af () =afi — 1)+ Tfy,a0) (5.25)
Expressed in the z-domain, Eq. (5.25) gives the desired update equation for AfH (2),

AR @) =77"AR@) + T7A;() (5.26)
In summary, we have a pair of coupled difference equations,

ajr1(n) = a;(n) + Tjaf(n —1)

af (n) = af(n— 1) +T},ai(n) (5.27)

for updating a;(n) and a f (n), along with a pair of coupled equations for updating the system
functions A;(z) and Af (z), which may be written in matrix form as

Aj 1 Tjpz7! A;
|: ;R+1(Z)] _ |: i ;+1f] |: Z(Z) il (5.28)
Aj1 (@) Ci 2 A7 (@)

Both of these representations describe to the two-port network shown in Fig. 5.2. This two-
port represents the basic module used to implement an FIR lattice filter. Cascading p such
lattice filter modules with reflection coefficients I'), 'y, . . ., I', forms the pth-order lattice
filter shown in Fig. 5.3. Note that the system function between the input 5(n) and the output
ap(n) is A,(z), whereas the system function relating the input to the output a 5 (n)is A 5 ().

THE LEVINSON-DURBIN RECURSION

225

af(n)

|

P

>
04 L

aj+1(n)

R
;. ()

Figure 5.2 A two-port network relating a;(n) and
ajR (r) to ajy(n) and afﬂ (n). This network is a single
stage of an FIR lattice filter.

aop(n) a(n) ax(n) ap_(n) ap(n)
> —p P> e > ——
8(n)
———— l"l Fz FI’
> > - so e - e
afn) af(n) af(n) al () af(n)

Figure 5.3 A pth-order FIR lattice filter built up as a cascade of p two-port networks.

5.2.3 Properties

In this section, we will establish some important properties of the reflection coefficient
sequence that is generated by the Levinson-Durbin recursion and we will establish an
important property of the solution to the autocorrelation normal equations. Specifically, we
will show that the roots of A,(z) will be inside the unit circle if and only if the reflection
coefficients are bounded by one in magnitude or, equivalently, if and only if R, is positive
definite. We will also show that the all-pole model obtained from the autocorrelation method
is guaranteed to be stable. Finally, we will establish the autocorrelation matching property,
which states that if we set b(0) = /€, in the autocorrelation method and if A(n) is the
inverse z-transform of

_ b0
H(Z)_A,,(z)

then the autocorrelation of /(n) is equal to the autocorrelation of x ().
The first property of the reflection coefficients is the following.

Property 1. The reflection coefficients that are generated by the Levinson-Durbin
recursion to solve the autocorrelation normal equations are bounded by one in mag-

nitude, |[';| < 1.

This property follows immediately from the fact that since ¢; is the minimum squared error,
& =&} (5.29)
with

&= lemP
n=0

226 THE LEVINSON RECURSION

where e(n) is the jth-order modeling error, then €; > 0. Therefore, since
€ = fj~1[1 - |r/|2]

it follows thatif ¢; > Oand ¢;_; > 0, then |T';| < 1.]

It is important to keep in mind that the validity of Property 1 relies on the nonnegativity
of €;. Implicit in this nonnegativity is the assumption that the autocorrelation values r, (k)
in R, are computed according to Eq. (4.121). It is not necessarily true, for example, that

¢ > 0 and |I';| < 1if an arbitrary sequence of numbers r,(0), r,(1),...,r.(p — 1) are
used in the matrix R,. To illustrate this point, consider what happens if we set r(0) =
1 and r,(1) = 2 in the normal equations and solve for the first-order model. In this
case,

Fy=—r(1)/re(0) = -2

which has a magnitude that is greater than one. This example is not in conflict with Prop-
erty 1, however, since for any valid autocorrelation sequence, [r,(0)| > |r,(1)|. As we will
soon discover (see Property 7 on p. 253), the unit magnitude constraint on the reflection
coefficients I'; and the nonnegativity of the sequence ¢; are tied to the positive definiteness
of the matrix R,.

The next property establishes a relationship between the locations of the roots of the
polynomial A,(z) and the magnitudes of the reflection coefficients I';.

Property 2. If a,(k) is a set of model parameters and I'; is the corresponding set of
reflection coefficients, then

14
Ay =1+ a,z™*
k=1

will be a minimum phase polynomial (all of the roots of A,(z) will be inside the unit
circle) if and only if |[I';| < 1 for all j. Furthermore, if |T';| < 1 for all j then the
roots of A,(z) must lie either inside or on the unit circle.

There are many different ways to establish this property [14, 20, 24]. One way, as demon-
strated below, is to use the encirclement principle (principle of the argument) from complex
analysis [3]. .

Encirclement Principle. Given a rational function of z

_5Q

P(2) = AQ)

let C be a simple closed curve in the z plane as shown in Fig. 5.4, As the path C
is traversed in a counterclockwise direction, a closed curve is generated in the P(z)
plane that encircles the origin (N, — N,,) times in a counterclockwise direction where
N, is the number of zeros inside C and N, is the number of poles inside C .*

THE LEVINSON-DURBIN RECURSION 227

Im(z) Im P(2)
[

P(Z())

» Re P(2)

Figure 5.4 A simple closed curve in the z-plane encircling a simple zero and the corresponding
contour in the P(z) plane.

The encirclement principle may be interpreted geometrically as follows. Since C is a simple
closed curve, beginning and ending at z,, then P(z) will also be a closed curve, beginning
and ending at the same point, P(z). If there is a zero contained within the contour then
the angle 6 from the zero to a point on the contour will increase by 27 as the contour is
traversed. In the P(z) plane, therefore, the curve that is generated will encircle the origin
in a counterclockwise direction. Similarly, if there is a pole inside the contour, then the
angle will decrease by 27 as C is traversed, which produces a curve in the P(z) plane that
encircles the origin in the clockwise direction. With N, zeros and N, poles inside C, the
change in angle is 27 (N, — N,) and the encirclement principle follows. Although not stated
in the encirclement principle, it should be clear that if there is a zero of P(z) on the contour
C, then the curve in the P(z) plane will pass through the origin.

With the encirclement principle, we may use induction to establish Property 2. Specif-
ically, for a first-order model,

Al =1+Tz7!

and it follows that A (z) will be minimum phase if and only if |I"1| < 1. Let us now assume

that A;(z) is minimum phase and show that A;(z) will be minimum phase if and only if

ITj+1] < 1. To accomplish this, we will use the z-domain representation of the Levinson

order-update equation given in Eq. (5.23), which is repeated below for convenience
Ajn1(@) = Aj@) + Tz 'AR)

Dividing both sides of this update equation by A;(z) we have

Ajn(2) _ - A}?(Z)

P =
@=L 4,@)

14Tz (5.30)

aEN, — N,, is negative then the curve P(z) encircles the origin in a clockwise direction |N, — N, | times.

228 THE LEVINSON RECURSION

We will now show that if C is a closed contour that traverses the unit circle then the number
of times that P(z) encircles the origin in a clockwise direction is equal to the number of
zeros of A;(z) that are outside the unit circle. Since A;(z) is assumed to be minimum
phase, A;(z) has j zeros inside the unit circle and j poles at z = 0. Now let us assume that
Aj+1(2) has [zeros outside the unit circle and j + 1 — [zeros inside. Since A;4(z) will
have j 4 1 poles at z = 0, it follows that the number of times that P (z) encircles the origin
in a counter clockwise direction is

N, —Ny=(0+1-D—-(G+1)=-1
or, [times in a clockwise direction. Now, note that since the contour C is the unit circle,
then z = ¢/% and
ARe/)

Af @) j
Aj(ei®)

Aj(z)

= T = Tyl

c c

Therefore, it follows from Eq. (5.30) that P(z) traces out a curve which is a circle of
radius |T";4 | that is centered at z = 1 (see Fig. 5.5). Thus, if [T'j4+i| < 1, then P(2)
does not encircle or pass through the origin. Conversely, if |T';;;| > 1 then P(z) encir-
cles the origin and A;;(z) will not have all of its zeros inside the unit circle. Conse-
quently, if A;(z) is minimum phase, then A;.(z) will be minimum phase if and only if
|Fj+|| < 1. u

Fj+12_

There is an intimate connection between the positive definiteness of the Toeplitz matrix,
R, and the minimum phase property of the solution to the normal equations. In particular,
the following property states that A, (z) will be minimum phase if and only if R, is positive
definite (see also Section 5.2.7).

Property 3. If a, is the solution to the Toeplitz normal equations R,a, = €,u,, then

Ap(z) will be minimum phase if and only if R, is positive definite, R, > 0.

A ImP(2)

ITj4l

ReP(2)

Figure 5.5 The curve P(z), whichis acircle of radius |T"; 4|
that is centered at 7 = 1.

THE LEVINSON-DURBIN RECURSION 229

To establish this property, let o be a root of the polynomial A,(z). In general, o will be
complex and we may factor A,(z) as follows

P
Ap@ =1+ a0z =0 —az Y1 +biz + bz 2+ +bpyz7 @)
k=1

We will show that if R, > 0, then |a| < 1. Writing the vector a, in factored form as

1 1 0
ap(1) b 1
a=| @@ || & b [!]=B[. :I (531)
ap(p) 0 by
it follows that
R,a, = R,,B[_Oll] =€, (5.32)

Multiplying Eq. (5.32) on the left by B we have

vas] L]

Since B has full rank, if R, is positive definite, then BR,B will be positive definite (see
p. 40). Therefore,

H _ | So 5
BRPB_[S]“ so]>0

which implies that

Isol? > Is|? (5.33)
Since
H L] _ | so=—six | _ 1
s, |=[270 [=o [
then spor = 5§ and
o= (5.34)
50

Thus, Eq. (5.33) implies that || < 1 and A,(z) is minimum phase. Conversely, if A,(z) is
not minimum phase, then A,(z) will have a root & with |a| > 1. Therefore, from Eq. (5.34)
it follows that |s| > |so| and R,, is not positive definite. []

Property 1 states that the reflection coefficients that are generated in the course of
solving the autocorrelation normal equations are bounded by one in magnitude. Property 2
states that a polynomial A,(z) will have all of its roots inside the unit circle if its reflection
coefficients are less than one in magnitude. Combining Properties 1 and 2 leads to the
following property.

230 THE LEVINSON RECURSION

Property 4. The autocorrelation method produces a stable all-pole model.

In the next property, we consider what happens to the roots of the polynomial A,(z)
when |I'p| = 1 with the remaining terms in the reflection coefficient sequence being less
than one in magnitude.

Property 5. Let a, (k) be a set of filter coefficients and T'; the corresponding set of
reflection coefficients. If [T';| < 1for j = 1,...,p — 1 and [[',| = 1, then the
polynomial

P
Ay =1+ aytk)z™
k=1

has all of its roots on the unit circle.

This property may be established easily as follows. Let I'; be a sequence of reflection
coefficients with |T';| < 1for j < pand|T,| = 1. Since |T';| < 1 for all j, it follows from
Property 2 that all of the zeros of A,(z) are on or inside the unit circle. If we denote the
zeros of A,(z) by z, then

P
Ap(2) = 1—[(1 —zz7")
k=t
By equating the coefficients of z~7 on both sides of the equation, we have

p
ap(p) =[] = (5.35)
k=1

However, since a,(p) =T'p, if |T,| = 1, then

P
[Tzl =1 (5.36)
k=1

Therefore, if there is a zero of A,(z) that has a magnitude that is less than one, then there
must be at least one zero with a magnitude greater than one, otherwise the product of the
roots would not equal one. This, however, contradicts the requirement that all of the roots
must lie on or inside the unit circle and Property 5 is established.]

This property may be used to develop a constrained lattice filter for detecting sinusoids
in noise (see computer exercise C6.1 in Chapter 6). It also forms the basis for an effi-
cient algorithm in spectrum estimation for finding the Pisarenko harmonic decomposition
(Chapter 8) of a stationary random process [11].

The next property relates the autocorrelation sequence of x(n) to the autocorrelation
sequence of A (n), the unit sample response of the all-pole filter that is used to model x(n).
Specifically, as we demonstrate below, if £(0), the numerator coefficient in H(z), is selected

THE LEVINSON-DURBIN RECURSION 231

so that x(n) satisfies the energy matching constraint, r,(0) = r,(0), then b(0) = /€, and
the autocorrelation sequences are equal for |k| < p. This is the so-called autocorrelation
matching property.

Property 6—Autocorrelation matching property. If b(0) is chosen to satisfy the
energy matching constraint, then b(0) = , /€, and the autocorrelation sequences of

x(n) and h(n) are equal for |k| < p.

In order to establish this property, we will follow the approach given in [18]. We begin
by noting that since A (n) is the unit sample response of the all-pole model for x (n) with

b(0)
P

1+ a,tkz™
k=1

H(z) =

where the coefficients a, (k) are solutions to the normal equations
R.a, = ¢puy (5.37)

then h(n) satisfies the difference equation
P
h(n) +) ap(kyh(n — k) = b(0)3(n) (5.38)
k=1

Multiplying both sides of Eq. (5.38) by 4*(n — I) and summing over n yields

o0 14 o0 o]

Y hmntn =D+ ap k)Y hin =Rk (n = 1) = b(©0)) 8(n)h*(n = 1)

n=0 k=1 n=0 n=0

= b(O)h* (=) (5.39)
With
rn(l) =Y k@ (n =) =rp(=1)
n=0

we may rewrite Eq. (5.39) in terms of r; (/) as follows
P
) +) _ ap(kyrall — k) = bOYh* (1)
k=1

Since A(n) is causal, then A(n) = O for n < 0 and #(0) = b(0). Therefore, for ! > 0, it
follows that

P
)+ a0l — k) = bO)8¢) ;5 1>0 (5.40)
k=1

232 THE LEVINSON RECURSION

Using the conjugate symmetry of r,(!) we may write Eq. (5.40) in matrix form as

ry(0) re(l) ry(2) e rp(p) 1 1
rp(1) ry(0))y o ri(p—1 ay(1) 0
rn(2) ra() @ o (P =2 || 4@ | = po)2| 0| (5.41)
r(p) r(p—=1) r(p=2y - ryp(0) a,(p) 0
or
Rua, = |b(0)*u, (5.42)

Therefore, a, is the solution to each of the following sets of Toeplitz equations,
Rpa, = |bo|*u,
R.a, = €,u, (543)

Now, suppose that b(0) is chosen to satisfy the energy matching constraint,
00 o
ROESPHOTES PIOTESA®; (5.44)
=0 n=0

By induction we may then show that r,(k) = ry(k) for k > 0 as follows. Using the
Levinson-Durbin recursion to solve Eq. (5.43) we have

ro(1) _rh(l)

(0 ra(0)

Since r,(0) = ry(0), it follows that r,(1) = r,(1). Now, assume that r, (k) = ry(k) for
k=1,2,...,j.Using Egs. (5.10) and (5.13) we have

a(l)=-

J
reG+ D = —Trg — Y air(+1-1i)
i=1
j
G+ = =Ty — Y g6 +1-1) (5.45)
i=1

Therefore, since r, (i) = rp(i) fori = 1,2,...,j, thenr,(j + 1) = ry(j + 1). Finally,
from Eq. (5.41) note that

14
O = ra(0)+ Y _ ap(kyru(k)
k=1

With r, (k) = r, (k) it follows that

P
6O = re(0) + Y ap(kyre(k) =¢, (5.46)

k=1
Therefore, b(0) = ,/€, and the autocorrelation matching property is established. []

5.2.4 The Step-Up and Step-Down Recursions

The Levinson-Durbin recursion solves the autocorrelation normal equations and produces
an all-pole model for a signal from the autocorrelation sequence r, (k). In addition to the
model parameters, the recursion generates a set of reflection coefficients, I'y, I'2, ..., I'p,

THE LEVINSON-DURBIN RECURSION 233

along with the final modeling error, €,,. Thus, the recursion may be viewed as a mapping
ap(l)’ ap(z)’ ey ap(p)v b(O)

Fl,rz, ...,Fp,€p

{re(0), re (1), .., re(p)) 255

from an autocorrelation sequence to a set of model parameters and to a set of reflection
coefficients. There are many instances in which it would be convenient to be able to derive
the reflection coefficients, I';, from the filter coefficients a,(k), and vice versa. In this
section, we show how one set of parameters may be derived from the other in a recursive
fashion. The recursions for performing these transformations are called the step-up and
step-down recursions,

The Levinson order-update equation given in Eq. (5.16) is a recursion for deriving the
filter coefficients a, (k) from the reflection coefficients, I';. Specifically, since

aj41() = a;(i) + Tjmal G~ i + 1) (5.47)

then the filter coefficients a;+ (/) may be easily found from ag; (i) and I'; ;| . The recursion is
initialized by setting ao(0) = 1 and, after the coefficients a,, (k) have been determined, the re-
cursion is completed by setting b(0) = , /€. Since Eq. (5.47) defines how the model param-
eters for a jth-order filter may be updated (stepped-up) to a (j + 1)st-order filter given I';.,4,
Eq. (5.47) is referred to as the step-up recursion. The recursion, represented pictorially as

Step—up

[T1T2 . Th 6} " {a,(1),a,(2), ..., a,(p), b(0)}

is summarized in Table 5.2 and a MATLAB program is given in Fig 5.6.

Table 5.2 The Step-up Recursion

Initialize the recursion: ao(0) = 1
2. Forj=0,1...,p—~1
@Fori=1,2,,...,j
G} =a;()+Tjna(j—i+ 1)
®) a1+ 1) =T

The Step-Up Recursion

function a=gtoa(gamma)
%
a=1;
gamma=garma (:) ;
p=length(gamma) ;
for j=2:p+1;
a=[a;0] + gamma(j-1)*[0;conj(flipud(a))l];
end

Figure 5.6 A MATLAB program for the step-up recursion to find the filter coefficients a,(k) from the
reflection coefficients.

234 THE LEVINSON RECURSION

Example 5.2,3 The Step-Up Recursion
Given the reflection coefficient sequence
r,=[l, Fz]T

the first- and second-order all-pole models may be found from the step-up recursion as
follows. From Eq. (5.14), the first-order model is

—_— l 1

=| r |

w=[aw J=[o o]}

Again using Eq. (5.14) we have for a,,

1 1 0
a=| al) |=] a) |+T2] a1
| %02 | o 1
[1 0 1]
= | + I FT = F]'}‘FTFZ
| O | 1 I,]

Therefore, in terms of the reflection coefficients 'y and I, the general form for the second-
order all-pole model is

Ay2) =1+ (0 + Tz + Tyz 2

Given a second-order model, a;, note that if a third reflection coefficient, I3, is appended
to the sequence, then a3 may be easily found from a; as follows

1 1 0
_ | as() ax(1) a;(2)
I PGS n@ | T a0
| a;3) 0 1
[1 1
_ ax(1) +TNa3(2) (I'1 + Iy) + 303
a2(2) + INa3 (1) 2+ O3} + I0i)
L I3 I3

Thus, it is always possible to increase the order of the filter without having to solve again
for the lower-order filters.

The step-up recursion is a mapping, £ : I, — a,, from a reflection coefficient
sequence ', to a filter coefficient sequence a,. In most cases, this mapping may be inverted,
Lt a, — T, and the reflection coefficients determined from the model parameters, a,.
The mapping that accomplishes this is called the step-down or backward Levinson recursion.
The procedure for finding the reflection coefficients is based on the fact that since

then the reflection coefficients may be computed by running the Levinson-Durbin recursion
backwards. Specifically, beginning with a, we set I', = a,(p). Then, we recursively find

THE LEVINSON-DURBIN RECURSION 235

each of the lower-order models, a;, for j = p—1,p—2,...,1 and set I'; = q;(j) as
illustrated below

a, = ap(D) a2y -+ apy(p—=2) ap(p—1
a, 1 = a (1) a2 - a1(p—2) i

a2 = apa2(l) ap2(2) -

a = a)
a) =

To see how the jth-order model may be derived from the (j + 1)st-order model, let us assume
that the coefficients a;, (i) are known. The Levinson order-update equation, Eq. (5.16),
expresses a;41 (i) in terms of a;(i) and a;(j — i + 1) as follows

aj1G) = a;()) + Tjiaf (G — i + 1) (5.49)

which provides us with one equation in the two unknowns, a; (i) and a}‘(Jj—i+1). However,
if we again use the Levinson order-update equation to express a;;1(j —i + 1) in terms of
aj(j—i+1)and a;‘(i) we have

ain(j—i+ 1) =a;(j—i+1)+ a7 @)
which, after taking complex conjugates,
aa(—i+D)=a;(j—i+1)+T},a0G) (5.50)

gives us a second linear equation in the same two unknowns. Writing Eqs. (5.49) and (5.50)
in matrix form we have

[am®]= I T][Ao] 5.51)
aj+l(j_l+1) F;+l 1 a](.’_l+)

If [Tj4+1| # 1, then the matrix in Eq. (5.51) is invertible and we may solve uniquely for
a;(i).’ The solution is

; [a,+.(,-) — Tl G —i + 1)] (5.52)

. 1
4O =T

which is the step-down recursion. This recursion may also be written in vector form as
follows

a;(1) aj+1(1) a;+l(j)

a;(2) 1 aj+1(2) ai, (-1
SToinae)| o |70 : G39

a;(j) aj+1(j) ai . (D

Once the sequence a;(i) has been found, we set I'; = a;(j) and the recursion continues by
finding the next lower-order polynomial. The step-down recursion, represented pictorially

SIf ITj+1] = 1, then Eq. (5.51) is a singular set of equations and the mapping is not uniquely invertible.

236 THE LEVINSON RECURSION

as

Step—down

{ap(1), ap(2), ..., a,(p), bO)} =" (T, T2, ..., T, €p)

is summarized in Table 5.3.
Another and perhaps more elegant way to derive the step-down recursion is to use

Eq. (5.28) to solve for the jth-order polynomial A;(z) in terms of A;(z). The solution is
easily seen to be

A - - —T.. 77! A
[je(z) __ 1 : z* j+12][,R+1(z>] (5.5
AR @) (1= 1Tl?) | -Thy 1 AR @)

Therefore,

Aj(R) =

1=l Ajp1(@) — 1“J'+1AJR+1(Z):| (5.55)
T

which is the z-domain formulation of Eq. (5.52). A MATLAB program for the step-down
recursion is given in Fig. 5.7.

Table 5.3 The Step-down Recursion

1. Setl, =a,(p)
2. Forj=p—-1,p—-2,...,1
@Fori=12,...,j

a;(i) = i1 (D) = Tyl (G =i + 1)}

1
1= |02
(b) Set l"j =aj(j)

© If [T| = 1, Quit.
3. €, =b%0)

The Step-Down Recursion

function gamma=atog(a)
%
a=af(:);
p=length(a);
a=a(2:p)/a(l);
gamma (p-1) =a (p-1) ;
for j=p-1:-1:2;
az(a(l:j-1) - gamma(j)*flipud(conj(a(l:j-1))))./ ...
(1 - abs{gamma(j))~2);
gamma (j-1)=a(j-1);
end

Figure 5.7 A MATLAB program for the step-down recursion to find the reflection coefficients from a
set of filter coefficients a, (k).

THE LEVINSON-DURBIN RECURSION 237

Example 5.2.4 The Step-Down Recursion
Suppose that we would like to implement the third-order FIR filter
H(z) =1+05z7"' - 0.1z72-0.5¢7°

using a lattice filter structure. Using the step-down recursion, the reflection coefficients may
be found from the vector

a3 =[1, 0.5, 0.1, —0.5]"

and then implemented using the structure shown in Fig. 5.3. The step-down recursion begins
by setting I's = a3(3) = —0.5. Then, the coefficients of the second-order polynomial
a; = [1, ax(1), a2(2)]” are found from a3 (i) using Eq. (5.53) with j = 2 as follows

[ax(1)]= 1 [[az(1)]—I‘3 a3 (2)]]
a;(2) 1-12 [a3(2) as(1)
From the given values for a3 and I';;; we find
a)(l) | _ 1 0.5 -0.1 _ 1 06
[ay(2)]_ 1-0.25 [[—0.1]+0'5[0.5]] - [0.2]
and I'; = a,(2) = 0.2. Having found a5, Eq. (5.52) may again be used to find a, as follows
1
ai(1) = ——[ax(1) — T2a:(1)] = 0.5
117

Thus, I') = a;(1) = 0.5 and the reflection coefficient sequence is
r=[o05, 02, —05]

Therefore, a lattice filter having the given system function is as shown in Fig. 5.8.

> > > y(n)

x(n)

7! 77! z7!

Figure 5.8 A lattice filter implementation of the filter H(z) = 14+0.5z7' — 0.1z72 — 0.5z73.

An interesting and useful application of the step-down recursion is the Schur-Cohn
stability test for digital filters [27]. This test is based on Property 2 (p. 226), which states
that the roots of a polynomial will lie inside the unit circle if and only if the magnitudes of
the reflection coefficients are less than one. Therefore, given a causal, linear shift-invariant
filter with a rational system function,

_ 3@
T AQ)

the filter may be tested for stability as follows. First, the step-down recursion is applied
to the coefficients of the denominator polynomial A(z) to generate a reflection coefficient

H(z)

238 THE LEVINSON RECURSION

sequence, [";. The filter will then be stable if and only if all of the reflection coefficients are
less than one in magnitude. The following example illustrates the procedure.

Example 5.2.5 The Schur-Cohn Stability Test
Let us use the Schur-Cohn stability test to check the stability of the filter

1
244771 =322 4273

First note that the leading coefficient in the denominator polynomial is not equal to one.
Therefore, we begin by rewriting H(z) as follows

0.5
1+2z71 —1.5z72+4+0.5z73

With I'; = a3(3) = 0.5 we then solve for the second-order polynomial A(z) = 1 +
ay(Nz7' + ay(2)z72 using Eq. (5.53) as follows

[ax(1)] _ 1 {[az(1)]—I‘ [az(2)]]
@@ |~ 1-12 | & 2 oas()
4 2 -1.5
=3l -is]-os[27]]

T 13
= -10/3

Therefore, since [, = a»(2) = —10/3, then |[';| > 1 and the filter is unstable.

H(z) =

H() =

5.2.5 The Inverse Levinson-Durbin Recursion

We have seen how to derive the reflection coefficients and the model parameters from
an autocorrelation sequence. We have also derived recursions that map a sequence of re-
flection coefficients into a sequence of model parameters and vice versa. It is also pos-
sible to recursively compute the autocorrelation sequence from the reflection coefficients
{T',T2,...,,} and €, or from the coefficients of the pth-order model a,(k) and b(0).
The recursion for doing this is referred to as the inverse Levinson recursion. To see how
the recursion works, assume that we are given the reflection coefficient sequence I'; for
J =1,..., p and the pth-order error ¢,. Since

4
e =r O] [=T (5.56)
i=1

then the first term in the autocorrelation sequence is

) = 557)

[Ja—1r:?
i=1

THE LEVINSON-DURBIN RECURSION

239

Table 5.4 The Inverse Levinson-Durbin

Recursion

1. Initialize the recursion
@ 0 =¢/[],1=ITP)
) a0 =1

2. Porj=0,1,...,p—-1
(@ Pori=1,2,...,j

ap1 () = a;() + Tja (G — i + 1)

® agau(i+D) =T

© rG+D==Y"a6rG+1-i)

=

3. Done

This, along with the zeroth-order model

ao=1

initializes the recursion.

(5.58)

Now suppose that the first j terms of the autocorrelation sequence are known, along
with the jth-order filter coefficients a;(i). We will now show how to find the next term in
the sequence, r,(j 4 1). First we use the step-up recursion to find the coefficients a; (i)
from I'; ;1 and g;(i). Then, setting p = j + 1 and k = j + 1 in Eq. (5.2) we have the

following expression for r, (j + 1):

J+1

i=1

r(+ 1) ==Y ai @ +1-1)

(5.59)

Since the sum on the right only involves known autocorrelation values, this expression may
be used to determine r, (j +1), which completes the recursion. The inverse Levinson-Durbin

recursion, which may be represented pictorially as

(LEV)~!

{Fl, Iy, ..., l",,,e,,} — {rx(O),rx(l), cee rx(p)}

is summarized in Table 5.4.

Example 5.2.6 The Inverse Levinson-Durbin Recursion

Given the sequence of reflection coefficients, I')y = ') = Iy

% and a model error of

€3 = 2(2)% let us find the autocorrelation sequence r, = [r:(0), ry(1), r+(2), r-(3)17.

Initializing the recursion with

€3

)= — =2
O T o

240 THE LEVINSON RECURSION

we begin by finding the first-order model, which is given by
ar — 1 [[1
Tl Los

ry(l)=—r,O)I', =-1.0

Updating the model parameters using the step-up recursion we have

Therefore,

1 0 1 [o 1
m=|a®) [+N2| a() |=| 172 [+5| 172 [=| 3/4
0 1 0 1 1/2

Thus,
r(2) = —ax(Dre(1) —ay(Qr(0) =3/4 -1 =—1/4

Applying the step-up recursion to a, we have

1 0 1 0 1

e o | |34 | 12| | 1
D=1 o2 [T oy [T 12 [T2 34 || 778
0 1 0 1 172

Finally, for r, (3) we have
r<(3) = —a3(Dre(2) —a3)r (1) — a3 3)rx(0) = 1/4 +7/8 -1 =1/8
and the autocorrelation sequence is

r.=[2 -1, —1/4, 1/8]"

The inverse Levinson recursion described above provides a procedure for finding the
autocorrelation sequence from the reflection coefficients and ¢,,. If, instead of the reflection
coefficients, we were given the filter coefficients a,(k), then the autocorrelation sequence
may still be determined by using the step-down recursion to find the sequence of reflection
coefficients and then using the inverse Levinson recursion. MATLAB programs for the in-
verse Levinson recursion to find r, (k) from either the reflection coefficients I'; or the filter
coefficients a, (k) are given in Fig. 5.9.

In summary, combining the results of Sections 5.2.4 and 5.2.5 we see that there is an
equivalence between three sets of parameteré: the autocorrelation sequence r,(k), the all-
pole model a, (k) and 5(0), and the reflection coefficients I'; along with ¢ - Thisequivalence
is illustrated in Fig. 5.10, which shows how one set of parameters may be derived from
another.

5.2.6 The Schur Recursion*

The Levinson-Durbin recursion provides an efficient solution to the autocorrelation normal
equations. For a pth-order model, this recursion requires on the order of p? arithmetic op-
erations compared to an order of p> operations for Gaussian elimination. Therefore, with
a single processor that takes one unit of time for an arithmetic operation, the Levinson-
Durbin recursion would require on the order of p? units of time to solve the normal equa-
tions. With the increasing use of VLSI technology and parallel processing architectures

THE LEVINSON-DURBIN RECURSION 241

The Inverse Levinson-Durbin Recursions

function r=gtor (gamma,epsilon)
%
p=length (gamma) ;
aa=gamma (1) ;
r={1 -gamma(1l)1];
for j=2:p;
aa=[aa; 0] +gamma (j) *[conj (flipud(aa));1]1;
r=[{r -fliplr(r)*aal;

end;
if nargin == 2,
r = r*epsilon/prod(l-abs(gamma)."2);
end;

function r=ator(a,b)
%
p=length(a)-1;
gamma=atog(a) ;
r=gtor (gamma)

;

if nargin == 2,
r = r*sqrt(b)/prod(l-abs(gamma) .”"2);
end;

Figure 5.9 MATLAB programs to find the autocorrelation sequence r, (k) from either the reflection
coefficients T'; and the modeling error €, or the filter coefficients a, (k) and b(0).

re(0), re(1), ..., re(p)

4

Inverse

Levinson-Durbin | vy Schur
Levinson
AR < Durbin

Step-Down % v. Step-Up

I

ap(1),ap(2), ..., a,(p), b(0)

Figure 5.10 The equivalence between the autocorrelation sequence, the all-pole
model, and the reflection coefficients.

in signal processing applications, an interesting question to ask is how much time would
be necessary to solve the normal equations if we were to use p processors in parallel.
Although one would hope that the computation time would be proportional to p rather
than p?, this is not the case. In fact, it is not difficult to see that with p processors the

242 THE LEVINSON RECURSION

Levinson-Durbin recursion would solve the normal equations in a time that is proportional
to p log, p instead of p. The reason for this is the requirement to compute the inner prod-
uct

1

i a;(1)
yj=rx(j+1)+2a,-(i)rx(j+l—i)= [reG+1), r(j), - .o re(D)] : (5.60)

i=1 :
a;(j)
which is the primary computational bottleneck in the Levinson-Durbin recursion. Al-
though the j multiplications may be performed in one unit of time using j processors,
the j additions require log, j units of time. Therefore, with p processors, finding the
solution to the pth-order normal equations requires on the order of plog, p units of
time.

In this section, we derive another algorithm for solving the normal equations known
as the Schur recursion. This recursion, originally presented in 1917 as a procedure for
testing a polynomial to see if it is analytic and bounded in the unit disk [9, 22], avoids the
inner product in the calculation of y; and is therefore better suited to parallel processing.
Unlike the Levinson-Durbin recursion, which finds the filter coefficients a, (k) in addition to
the reflection coefficients I';, the Schur recursion only solves for the reflection coefficients.
Thus, the Schur recursion is a mapping from an autocorrelation sequence r, (k) to areflection
coefficient sequence

[reO), re(D), .. (@) P, Ty ., Ty 6 (5.61)
By avoiding the computation of the filter coefficients, a, (k), the Schur recursion is slightly
more efficient than the Levinson-Durbin recursion in terms of the number of multiplications,
even in a single processor implementation of the algorithm.
The development of the Schur recursion begins with the autocorrelation normal equa-
tions for a jth-order model

J
r) +) ahrk-D=0 ; k=12, ... (5.62)
=1

If we set a;(0) = 1 then the jth-order normal equations may be written as

J
> airk—0=0 ; k=1,2,...,j (5.63)
=0 '

which we will refer to as the orthogonality condition. Note that the left side of Eq. (5.63) is
the convolution of the finite length sequence a; (k) with the autocorrelation sequence ry (k).
Therefore, let us define g; (k) to be the sequence that is formed by convolving a; (k) with
rX (k)»

J
gk =) ajOrelk—1) = a;(k) xr (k) (5.64)
=0

Thus, as shown in Fig. 5.11, g;(k) is the output of the jth-order prediction error filter A;(z)
when the input is the autocorrelation sequence r, (k) and the orthogonality condition states

THE LEVINSON-DURBIN RECURSION 243

8 (k)
€
re(k) 8i (k)
—— Aj(Z) ——
IWAG
€;
ro(k) gfi) I T T k
—_— Af(@2) ——— p—o—0—0—0—0 -
Jl |

Figure 5.11 The sequences gj(k) and g jR (k) expressed as the output of the filter A;(z) and Af (2),
respectively, when the input is the autocorrelation sequence ry (k). Due to the orthogonality condition,
gi(k) =0fork = 1,...,jandgf(k)=0f0rk=0,...,j—1.

that g;(k) is equal to zerofork =1, ..., j,
gk)y=0 ; k=12,...,j (5.65)

In addition, since

J
80 =) aOr.(l) =¢ (5.66)
1=0

where the last equality follows from Eq. (5.3), then g;(0) is equal to the jth-order modeling
(prediction) error.

Now consider what happens when g; (k) is replaced with af (k) and gf (k) is the con-
volution of af (k) with r,(k),

J
gRt) =Y akUyr.k = 1) = af k) %, (k) (5.67)
=0

Thus, gf (k) is the response of the filter A f (2) to the input r, (k). Since a jR (k) = ay(j —k),
then

J J
gl =) a(—Drik—D=> aOr.k—j+0) (5.68)
=0 =0

Using the conjugate symmetry of the autocorrelation sequence, Eq. (5.68) becomes

J
gl =) aOrili-kl-D=g(-k (5.69)
=0

244 THE LEVINSON RECURSION

Therefore, it follows from Egs. (5.65) and (5.66) that
gfky=0 ; k=0,1,...,j—1 (5.70)
and
8 () =¢ (5.71)
These constraints on gﬁ (k) are illustrated in Fig. 5.11.

The next step is to use the Levinson-Durbin recursion to show how the sequences g; (k)
and ij(k) may be updated to form g;.;(k) and gjﬁl(k). Since gj41(k) = ajp1(k) * re(k),
using the Levinson order-update equation for a;, | (k) we have

gi+1(k) = ajp (k) xr (k) = [aj(k) + rj+1ajR(k - 1)] * 1y (k)
=gk +Tjgfk—1) (5.72)
In a similar fashion, since gj’fH k) =a jR+] (k) * r.(k), application of the Levinson order-
update equation gives
ghatk) = af, () xre(k) = [af(k = 1) + Ty a;(0)] * 1y (k)
=gk —1)+ 7,8k (5.73)

Equations (5.72) and (5.73) are recursive update equations for g;(k) and ij (k) and are
identical in form to the update equations given in Eq. (5.27) for a;(k) and a jR (k). The only
difference between the two recursions is in the initial condition. Specifically, for a; (k) we
have ag(k) = a(’f (k) = 8(k), whereas for g;(k) we have go(k) = g(f(k) = ry(k). Taking
the z-transform of Egs. (5.72) and (5.73) and putting them in matrix form gives

[Gi1(2)]= I [z [G;(2) } (5.74)

GRL (@) r,, GR (@)

A lattice filter interpretation of these update equations i1s shown in Fig. 5.12.

Recall that our goal is to derive a recursion that will take a sequence of autocorrelation
values and generate the corresponding sequence of reflection coefficients. Given the first
J reflection coefficients, the lattice filter shown in Fig. 5.12 allows one to determine the
sequences g; (k) and g jR (k) from the autocorrelation sequence. All that remains is to derive
a method to find the reflection coefficient, I'; 41, from g; (k) and ij (k). This may be done
as follows. Since g;(j + 1) = 0, evaluating Eq. (5.72) for k = j + 1 we have

grU+D=g0G+D+Tingi()=0
Therefore, '

&G +1)
r,=-8Y7" 575
at gR(j) 6-7)

and the recursion is complete. In summary, the Schur recursion begins by initializing g, (k)
and gf (k) fork = 1,2, ..., p with r.(k),

gok) = gf (k) = rx(k)

The first reflection coefficient is then computed from the ratio
go) r(l)
IPRORNO)

1

THE LEVINSON-DURBIN RECURSION 245

8j(n) > > 8j+1(n)
& (W —— — R,
Zz
(a) Lattice filter module for updating g; (k) and ij k).
8o(k) gi1(k) 82(k) 8p-1(k) 8p (k)
> > - xx P ————
Fx (k)
— I T, T,
. > P e ' e
85 k) g (k) 85 (k) gf (k) 8 (k)

(b) A pth-order lattice filter for generating g, (k) and gf (k) from r, (k).

Figure 5.12 The lattice filter used in the Schur recursion to generate the sequences g, (k) and g"f (k)
Jfrom the autocorrelation sequence.

Given I'y, alattice filter is then used to generate the sequences g (k) and glR (k). The second
reflection coefficient is then computed from the ratio

_&Q@)
gf(1)

which, in turn, is used in the lattice filter to generate the sequences g»(k) and gf (k) and
so on. In updating the sequences g;,(k) and ijH(k), note that since gj41(k) = 0 for
k=12,...,j+1and g}fH(k) =0fork =0,1,...,j, not all p values need to be
updated. Specifically, all that is required is to evaluate g; (k) fork > j + 1 and g}i, (k)
for k > j. The complete recursion is given in Table 5.5.

Additional insight into the operation of the Schur recursion may be gained if it is
formulated using vector notation. Let g; and gf be the vectors that contain the sequences
gj(k) and gf (k), respectively, and consider the 2 x (p + 1) matrix that has g; in the first

Table 5.5 The Schur Recursion

1. Setgo(k)=g(f(k)=r,(k)fork=0,1....,p.
2. Forj=0,1,...,p—1
(@) SetTjy =—g(j+1/gf()
® Fork=j+2,....p _
gi+1(k) = g;(k) + F,'+1ij(’¢ -1
(cy Fork=j+1,..., P
gfk) =gf(k— 1)+ T}, 8 k)
3. =288 p

246 THE LEVINSON RECURSION

row and gf in the second row

g | [@ g®» - &®
)" gty R - gf(p)
From Egs. (5.65), (5.66), and (5.70), we see that this matrix has the form®

g | [-0 0 gG+D - g
&’ 0 - 0 gfj) gRG+1 - gRp)

We are now going to perform a sequence of operations on this matrix that correspond to
those expressed in the z-domain by Eq. (5.74). These operations will comprise one iteration
of the Schur recursion. The first operation is to shift the second row of the matrix to the right
by one with gf(—l) entering as the first element of the second row (this corresponds to a
delay of g (k) by one or a multiplication of GF(z) by z™'). Note that after this shift, the
ratio of the two terms in column number (j + 2) is equal to —TI"; ;. Therefore, evaluating
the reflection coefficient we may then form the matrix

] (5.76)

1 Ty
0,4 = [!] 5.77)
A YN
and multiply the shifted matrix by @, to generate the updated sequences g;,| and gf+1
as follows

g1 U Tia € e 0 g+ - gi(p)
&')" iy 1 gf-1 - 0 gfG - gfp-D
_ [€+ - 0 0 gi+1U+2) -+ g41(p)

0 o 0 ij+1(j+1) g}i](./"f'z) ng(P)

This completes one step of the recursion. We may, however, simplify these operations
slightly by noting that the first column of the matrix in Eq. (5.76) never enters into the
calculations. Therefore, we may suppress the evaluation of these entries by initializing the
first element in the first column to zero and by bringing in a zero into the second row each
time that it is shifted to the right. Note that since ¢; = g f (j), then the error is not discarded
with this simplification. In summary, the steps described above lead to the following matrix
formulation of the Schur recursion. Beginning with

_ 0 () r2) - re(p)
Go_l:rx(O) r(1) 2y --- rx(,D)] (5.79)

] (5.78)

which is referred to as the generator matrix, a new matrix, Gy, is formed by shifting the
second row of Gy to the right by one

G0) n@ - rp)
710 n© r(- rp-1

Setting I"| equal to the negative of the ratio of the two terms in the second column of 60,

SWe could also use Eq. (5.71) to set gf(j) = ¢; in this matrix, but this would make the next step of computing
the reflection coefficient I';) using Eq. (5.75) a little more obscure.

THE LEVINSON-DURBIN RECURSION 247

we then form the matrix

and evaluate G, as follows

—as [0 0 5@ - g
G“Q‘G"‘[O gR() gR@) --- gf(p)} (5-80)

The recursion then repeats these three steps where, in general, at the jth step we

1. Shift the second row of G; to the right by one,
2, Compute I';4; as the negative of the ratio of the two terms in the (j + 2)nd column,
3. Multiply (E,- by @4, to form Gj4,.

The following example illustrates the procedure.

Example 5.2.7 The Schur Recursion

Given the autocorrelation sequence r, = [2, —1, —1/4, 1 /8]T, let us use the Schur
recursion to find the reflection coefficients I'y, I'», and I's.

1. Step 1: We begin the Schur recursion by initializing the generator matrix Gq to

G — 0 () rn@ rr®»] [0 -1 —1/4 1/8
= @) @ 3 | T2 -1 —1/4 1/8

2. Step 2: Forming the shifted matrix

~ [0 -1 —1/4 18
G"_[o 2 -1 —1/4}

1 05
& = [05 1]
This step only requires one division.
3. Step 3: Forming the product 9160 we find

_ae& _[1 0570 -1 —1/4 1/8
G‘_Q‘G"—[o.s 1”0 2 -1 —1/4}

=[0 0 -3/4 0]

it follows that I'y = 0.5 and

0 3/2 —9/8 —3/16

Since we know that the second element in the first row of G; will be equal to zero after
multiplying Go by ©,, this step of the recursion only requires five multiplications.

4. Step 4: From the shifted matrix

~ _[0 0 =314 0
G'—[o 0 32 —9/8}

1 05
92—[0.5 1]

Again, in this step, we have one division.

we see that ', = 0.5 and

248 THE LEVINSON RECURSION

5. Step 5: Forming the product 9261 we have

G —0s | 1 05 00 -344 0 7 _[0O0 0 —9/16
R L 00 32 —98 |70 0 98 —9/8

For this step we have three multiplications.
6. Step 6: Finally, forming the shifted matrix (Niz,

G [0 00 916
=10 0 0 98

we find that I'; = 0.5,

1 05
9 = [0.5 1]
and

o [1 057[0 00 —9/16]7_[0 00 0
G3—®3G2_[0.5 1][0 00 98]—[0 00 27/32]
Therefore, the error is

e =27/32

In this last step, we have one division and one multiplication.

Counting the number of arithmetic operations we find that this recursion required 9 multi-
plications and 3 divisions.

Unlike the Levinson-Durbin recursion, the Schur recursion is well suited to parallel
implementation. In particular, Kung and Hu [13] developed the pipelined structure shown
in Fig. 5.13 for implementing the Schur recursion. This structure consists of a cascade of p
modular cells, each containing an upper processing unit that computes the sequence values
g;(k) and a lower processing unit that computes the values gf (k). The upper processing
unit in cell 1 differs from the others in that it is a divider cell for computing the reflection
coefficients I';. The operation of this pipelined architecture is as follows.

1. The upper processing units are initialized with the autocorrelation values r, (1), ...,
rx{p) and the lower units with r,(0), ..., r,(p — 1) as shown in Fig. 5.13a. This step
loads the cells with the values of the matrix Gyg.

2. The divider cell computes the first reflection coefficient by dividing the contents in
the upper unit of cell 1 with the contents of the lower unit,

= _rx(l)/rx(o)

This reflection coefficient is then propagated simultaneously to each of the other
cells.

3. The upper units of each cell are updated as follows

gik)y=riky+Tirek—1) 5 &

1,...,p

and the lower units updated as

gRtky=ri(k—D+Tirek) ; k=1,...,p

THE LEVINSON-DURBIN RECURSION

249

-1 -1

——4— o ¢ 0 —qg—

ry

RO re
0
L
rx(l) <+ rx(2)
F A
Y
re(0) re(1)
| I

rx(p - 2)

T

r

r«(p)

rx(p_ 1)

T

r

(a) Initialization of the processing units with the autocorrelation sequence r, (k). The divider cell computes the
first reflection coefficient I"y which is then simultaneously propagated to each of the other units.

_ 8@ ry ry r}
gk i l l
z”!) 7! 7! Y 71 Y
gl(z) — 81(3) —e— o 00 —aq¢— gl(p) <
[} L X y
A L | 4
gk gf@ oo gf(p—1) gf(p)
FZ F2 FZ FZ

(b) State of the Schur pipeline after the first update.

Figure 5.13 A pipelined structure for implementing the Schur recursion.

This operation corresponds to the updating of Go by multiplying by ©,; to form the
new generator matrix G,.

4. The contents of the upper units in each cell are then shifted to the left by one cell.
Note that the last cell in the top row is left vacated.

5. The next reflection coefficient is then computed in the divider cell by dividing the
contents in the upper unit of cell 1 with the contents of the lower unit. This reflection
coefficient is then propagated simultaneously to each of the other cells. At this point,
the pipeline structure is in the state shown in Fig. 5.13b.

6. The upper units of each cell are again updated using

gir1(k) = g;(k) + Tip1gf (k — 1)

250 THE LEVINSON RECURSION

and the lower units using
gty =gRtk— 1)+ T}, k)
Steps4, 5 and 6 are repeated until all of the reflection coefficients have been computed.

We conclude this discussion of the Schur recursion with an evaluation of the computa-
tional requirements of the algorithm. Note that at the jth stage of the recursion, one division
is required to determine I'; | and p— j — I multiplications along with p— j — 1 additions are
necessary to evaluate the terms in the sequence g, (k) (step 2b in Table 5.5). In addition,
(p — j) multiplications and (p — j) additions are necessary in order to evaluate the terms in
the sequence g jR+l (k) (step 2c in Table 5.5). With p steps in the recursion, the total number
of multiplications and divisions is

p—1
P+2) (p—pD—p=p*+p
j=0
along with p? additions. Thus, in comparing the Schur recursion to the Levinson-Durbin
recursion (p. 223), we see that although the same number of additions are required with the
Schur recursion, there are p fewer multiplications.

5.2.7 The Cholesky Decomposition

We have seen that the Levinson-Durbin recursion is an efficient algorithm for solving the
autocorrelation normal equations. It may also be used to perform a Cholesky decomposition
of the Hermitian Toeplitz autocorrelation matrix R,. The Cholesky (LDU) decomposition
of a Hermitian matrix C is a factorization of the form

C =LDL” (5.81)

where L is a lower triangular matrix with ones along the diagonal and D is a diagonal
matrix. If the diagonal terms of the matrix D are nonnegative (C is positive semidefinite),
then D may be split into a product of two matrices by taking square roots

D =D'*D!'/2 (5.82)

and the Cholesky decomposition of C may be expressed as the product of an upper triangular
and a lower triangular matrix as follows

C = (LD'/?) (D'/2LH) (5-83)

With a Cholesky decomposition of the autocorrelation matrix we will easily be able to
establish the equivalence between the positive definiteness of R,,, the positivity of the error
sequence ¢;, and the unit magnitude constraint on the reflection coefficients I';. In addition,
we will be able to derive a closed-form expression for the inverse of the autocorrelation
matrix as well as a recursive algorithm for inverting a Toeplitz matrix.

To derive the Cholesky decomposition of R, consider the (p + 1) x (p + 1) upper
triangular matrix

1 af() a3 --- ay(p)
0 1 al) - ayp—1
A,=| 0 0 Lo aq(p—2 (5.84)

0 0 0 1

THE LEVINSON-DURBIN RECURSION 251

This matrix is formed from the vectors ap, 4, . . ., a, that are produced when the Levinson-
Durbin recursion is applied to the autocorrelation sequence r(0), . . ., r,(p). Note that the
Jth column of A, contains the filter coefficients, ajR_l, padded with zeros. Since

Rjaf = ¢u; (5.85)
wherew; = [0, O, ..., 117 is a unit vector of length j + 1 with a one in the final position,
then

€0 0 0 st 0

* ¢ 0 ..+ O

RA,=| * * @ == 0 (5.86)

x ok ok o g,

which is a lower triangular matrix with the prediction errors ¢; along the diagonal (an
asterisk is used to indicate those elements that are, in general, nonzero). Although we have
not yet established Eq. (5.85), it may be inferred from the Hermitian Toeplitz property of
R,. For example, since JR;‘,J = R, then

Rjaj = (JR;J)aj = €;u (587)

Multiplying on the left by J and using the fact that J> = I and Ja; = (a]R)*, Eq. (5.85)
follows from Eq. (5.87) after taking complex conjugates.

Since the product of two lower triangular matrices is a lower triangular matrix, if we
multiply R, A, on the left by the lower triangular matrix A, then we obtain another lower
triangular matrix, A;’ R, A,. Note that since the terms along the diagonal of A, are equal
to one, the diagonal of AZR,A , will be the same as that of R,A,,, and AYR, A, will also
have the form

@ 0 0 -~ 0
* ¢ 0 -+ 0

APRA,=| * * €@ = 0 (5.88)
X ok ok -oe €,

Even more importantly, however, is the observation that since A;’ R, A, is Hermitian, then
the matrix on the right side of Eq. (5.88) must also be Hermitian. Therefore, the terms below
the diagonal are zero and

AYR,A, =D, (5.89)

where D,, is a diagonal matrix
D, = diag{eo, €1, €,

Since A} is a lower triangular matrix with ones along the diagonal, then A is nonsin-
gular with det(A,) = 1 and the inverse of Af,’ is also a lower triangular matrix. Denoting
the inverse of A by L,, if we multiply Eq. (5.89) on the left by L, and on the right by L/

252 THE LEVINSON RECURSION

we have

R, =L,D,L” (5.90)

which is the desired factorization.

An interesting and important property that may be established from Eq. (5.89) is that
the determinant of the autocorrelation matrix R, is equal to the product of the modeling
errors,

p
det Rp = l—[€k (5.9
k=0

To see this, note that if we take the determinant of both sides of Eq. (5.89) and use the fact
that det(A,) = 1, then

detD, = det (AYR,A,)
= (detA7) (detR,) (detA,)
= detR, (5.92)

and Eq. (5.91) follows since

p
detD, = Hek
k=0

Using Eq. (5.91) we may also show that the positivity of the autocorrelation matrix R, is
tied to the positivity of the error sequence €. In particular, note that R, will be positive
definite if and only if

detR; >0 ; j=01,...,p (5.93)
Therefore, since
j
detR; =[] & (5.94)
k=0
it follows that R, will be positive definite if and only if ¢, > O fork = 0,1,..., p.

Furthermore, R, will be singular, det(R,) = 0, if ¢, = 0 for some k. This relationship
between the positive definiteness of R, and the positivity of the error sequence €; may also
be established using Sylvester’s law of inertia [21], which states that if A, is a nonsingular
matrix, then A,’f R, A, has the same number of positive eigenvalues as R, the same number
of negative eigenvalues, and the same number of zero eigenvalues. Since A,’,” R,A, =D,
with A, being nonsingular, then R, and D, have the same number of positive, negative,
and zero eigenvalues. Since the eigenvalues of D, are equal to ¢ it follows that R, > 0 if
and only if ¢, > O for all k. In summary, we have established the following fundamental
property of Hermitian Toeplitz matrices.

THE LEVINSON-DURBIN RECURSION 253

Property 7. For any (p + 1) x (p + 1) Hermitian Toeplitz matrix R,, the following
are equivalent:

1. R,>0
2. >0 j=1,...,p
3. IIjl<l, j=1,...,p

Furthermore, this equivalence remains valid if the strict inequalities are replaced with
less than or equal to inequalities.

In the following example we use this property to show how a Toeplitz matrix may be tested
to see whether or not it is positive definite.

Example 5.2.8 Testing for Positive Definiteness

Consider the 3 x 3 symmetric Toeplitz matrix

1 a B
R=|a | «
B o 1

Let us find the values of @ and 8 for which R is positive definite.
The first row of R may be considered to be the first three terms of an autocorrelation

T
sequence, r = [1, a, ﬂ] . Using the Levinson-Durbin recursion we may express the values
of the reflection coefficients, I') and I',, in terms of « and 8. Since

T =—r(1)/r0) = —a

then
a=[l,—a]” and ¢ =1—a?
Therefore,
N =@ +ar(l) =g —ao?
and
n. a>—8
2= _Z T 12

Now, in order for R to be positive definite it is necessary that |I"}| < 1 and |I'2| < 1, which
implies that

@) le| < 1
a-p

T— a2 <1

(i)

From the second condition, it follows that

a’—p

a2 <1

-1 <

254 THE LEVINSON RECURSION

Figure 5.14 The values for a and B for which the autocorrelation matrix asso-
ciated with the autocorrelation sequence r = [1, a, BT is positive definite.

which, since |¢| < 1, becomes
*—1<a?—B<1-a?
The left-hand inequality gives
B <1
and the right-hand inequality is equivalent to
B>2a%—1

Therefore, the allowable values for o and 8 lie within the shaded region shown in Fig. 5.14.

5.2.8 The Autocorrelation Extension Problem

In this section, we consider the autocorrelation extension problem, which addresses the
following question: Given the first (p + 1) values of an autocorrelation sequence, r, (k) for
k=0,1,..., p, how may we extend (extrapolate) this partial autocorrelation sequence
for k > p in such a way that the extrapolated sequence is a valid autocorrelation sequence?
In Section 3.3.5 of Chapter 3 we saw that in order for a finite sequence of numbers to
be a valid partial autocorrelation sequence, the autocorrelation matrix formed from this
sequence must be nonnegative definite, R, > 0. Therefore, any extension must preserve
this nonnegative definite property, i.e., R, = 0, and R,4> > 0, and so on. In Section
3.6.1 of Chapter 3 we discovered one possible way to extrapolate a partial autocorrelation
sequence. Specifically, given r,(k) fork =0, 1, ..., p, if r, (k) is extrapolated for k > p
according to the recursion

P
re(k) =Y ap(yretk — 1) (5.95)
I=1

where the coefficients a, (/) are the solution to the Yule-Walker (normal) equations

Rya, = ¢,m (5.96)

THE LEVINSON-DURBIN RECURSION 255

then the resulting sequence will be a valid autocorrelation sequence. This follows from the
fact that this extrapolation generates the autocorrelation sequence of the AR(p) process that
is consistent with the given autocorrelation values, i.e., r,(k) for |k| < p. Thus, a finite
sequence of numbers is extendible if and only if R, > 0 and, if extendible, one possi-
ble extension is given by Eq. (5.95). We have not yet addressed, however, the question of
whether or not other extensions are possible. Equivalently, given a partial autocorrelation
sequence r,(k) fork =0, 1, ..., p, what values of r,(p + 1) will produce a valid partial
autocorrelation sequence with R, | > 0?7 The answers to these questions may be deduced
from Property 7 (p. 253), which states that if R, is nonnegative definite, then R, will
be nonnegative definite if and only if |'p;1| < 1. Therefore, by expressing r.(p + 1) in
terms of the reflection coefficient I', | we may place a bound on the allowable values for
r¢(p + 1). The desired relationship follows from Egs. (5.10) and (5.13), which gives, for
re(p+ 1),
p
re(p+1)=—Tp16,— > _ap()re(p—k +1) (5.97)
k=1

With I', | a complex number that is bounded by one in magnitude, |[I"py1| < 1, Eq. (5.97)
implies that r,(p + 1) is constrained to lie within or on a circle of radius €, that is centered
atC = — Y 7 a,(k)re(p — k + 1), as shown in Fig. 5.15. In the real case, the range of
allowable values is
P P

ayr(p—k+1) <r(p+1) <= Y apy(r(p—k+1) (598
k=1 k=1

.Gp

There are two special cases of autocorrelation sequence extension that are worth some dis-
cussion. The first occurs when we set ', | = 0. In this case, the extrapolation is performed
according to Eq. (5.95) with

p

re(p+ D =) a,r(p+1-1)

I=1

Furthermore, if the extrapolation of r, (k) is continued in this manner for all £ > p, then
the resulting autocorrelation sequence will correspond to an AR(p) process that has a power

Amr(p+ D]

Im[—Zf=,a,,(k)r,‘.(p—k+I)] F————— ===}

| Re[r.(p+ 1]
1

Re[- 37, a,(b)re(p — k + D]

Figure 5.15 The allowable values for the autocorrelation coefficient r.(p + 1) given the partial
autocorrelation sequence ry(k) for k. = 0, 1,..., p are shown to lie within the circle of radius €,
centered at C.

256 THE LEVINSON RECURSION

spectrum equal to
b(0)?

Py (e’) = 5 (5.99)

)4
1+ ay(kye*
k=1

The second case occurs when |I'py ;| = 1. When the magnitude of I, is equal to one,
ro(p + 1) lies on the circle shown in Fig. 5.15, the (p + 1)st-order model error is zero,

€1 = €,[1 - |rp+,|2] =0 (5.100)

the matrix R, is singular, and the predictor polynomial A, (z) has all of its roots on the
unit circle (see Property 5, p. 230). As we will see in Section 8.6 of Chapter 8, this case
will be important for frequency estimation and for modeling signals as a sum of complex
exponentials.

Example 5.2.9 Autocorrelation Extension

Given the partial autocorrelation sequence r,(0) = 1 and r,(1) = 0.5, let us find the set of
allowable values for r, (2), assuming that r, (2) is real. For the first-order model we have

(1)
=— = —0.5
R0
and a,(1) = I'y = —0.5. Thus, with a first-order modeling error of

& =r,(O)[1 - T1*]=0.75
we have
re(2) = -T2y —ay(D)ry (1) = —0.75T, + 0.25
Therefore, with |I";| < 1 it follows that
-05=<r(2) =<1

In the special case of I'; = 0, r,(2) = 0.25 and, in the extreme cases of I'; = %1, the
autocorrelation values are r,(2) = —0.5and r,(2) = 1.

5.2.9 Inverting a Toeplitz Matrix*

In this section, we will derive a recursive algorithm for inverting a Toeplitz matrix R, and
show how this recursion may be used to derive the Levinson recursion for solving a general
set of Toeplitz equations

R,x=Db

We begin by showing how the decomposition derived in Section 5.2.7 may be used to
express the inverse of a Toeplitz matrix in terms of the vectors a; and the errors ¢;. The
Levinson-Durbin recursion will then be applied to this expression for R;' to derive the
Toeplitz matrix inversion recursion.

Let R, be a nonsingular Hermitian Toeplitz matrix. Using the decomposition given in
Eq. (5.89), taking the inverse of both sides, we have

H -1 —1p—14— -1
(AFR,A,) =AT'RIIASH =D (5.101)
Multiplying both sides of this equation by A, on the left and by A;’ on the right gives the

THE LEVINSON-DURBIN RECURSION 257

desired expression for R;l ,
-1 _ —1AH
R, =A,D, A (5.102)

Since D,, is a diagonal matrix, D;‘ is easily computed. Therefore, finding the inverse of R,
simply involves applying the Levinson-Durbin recursion to the sequence r,(0), ..., r.(p),
forming the matrix A,, and performing the matrix product in Eq. (5.102).

Example 5.2.10 Inverting a Toeplit; Matrix

Let us find the inverse of the 3 x 3 autocorrelation matrix

2 01
0 2 0
1 0 2

We begin by using the Levinson-Durbin recursion to find the vectors a; and the errors ¢;
for j =0, 1, 2. For j = 0, we have ag = 1 and ¢y = r,(0) = 2. With

F=-r.(D/r:(0)=0

[4]

e =¢€fl-Tj]=2

R;

the first-order model is

with an error

For the second-order model,
Vi =r(2) +a(Dre(l) =1

and

n=-%=_1p

€]
Thus,
1
a = 0
—1/2

and

€ = 61[1 - F%] = 3/2
Finally, using Eq. (5.102) we have for the inverse of Ry,

1 0 —1,2 /2 0 0 1 00
RI'=AD'AT= 01 o0 0 1/2 0 0 10
00 1 0 0 2/3 -1/2 0 1
172 0 -1/3 1 00
= 0 1/2 0 0 10
| 0 0 23 -1/2 0 1
2/3 0 -—1/3]
= 0 12 0
| —1/3 0 2/3

258 THE LEVINSON RECURSION

Note that the inverse of a Toeplitz matrix is not, in general, Toeplitz. However, as discussed
in Section 2.3.7 (p. 38) and as illustrated in this example, the inverse of a symmetric Toeplitz
matrix is centrosymmetric [17].

In the next example, Eq. (5.102) is used to find the inverse autocorrelation matrix of a
first-order autoregressive process.

Example 5.2.11 The Inverse Autocorrelation Matrix for an AR(1) Process

Let R, be the autocorrelation matrix of an AR(1) process that is generated by the difference
equation
x(n) =ax(n — 1) + wn)

where || < 1 and w(n) is zero mean white noise with a variance o2. Thus, the autocorre-
lation sequence of x(n) is

2

o
k|
ro(k) = —2_a
* 1 —o?
and the autocorrelation matrix is
1 o o? af
) o 1 o e Pl
R. = w o> 1 aP?
P —a2
af afl P2 ... 1

From Example 5.2.2 (p. 221) we know that the jth-order model for x () is
a; =[1,-a,0,...,0]"

and that the sequence of modeling errors is

€ 0'%
07 1T a2
and
=02 ; k=1
Therefore,
1 —a O 0 0 7]
0 1 —« 0 0
0 1 0 0
A, = .
0 O 0]l —«
L 0 O 0 0 1 |
and

1
D, =diag{eo*‘,e;‘,... ! e"l} = —diag{(1—a?), 1 1., 1}
w

THE LEVINSON-DURBIN RECURSION 259

From Eq. (5.102) it follows that

1l =« 0 -.- 0 0 [1=¢2 0 ... 0 07
0 1 —a -~ 0 0 0 1 -« 0 O
1 0 0 1 -« 0 0 0 0O --- 00
R;' = —
» pH R . o } .
0 0 0 1 —«o 0 0 1 0
0 0 0 o 1]| o o 01 |
1 0 0 07
—a 1 0 0
0 —« 0 0
X .
0 0 1 O
| O 0 - 1_
[1—a? —a o o0 [1 0 07
0 1 0 0 —a 1 0 0
| 0o 0 0 0 0 —a 0 0
T a2 :
0 0] —«o 0 0 1
0 o o 1]Lo o —o 1|
! —a 0 0]
—a 1402 0 0
1 0 — 0 0
0 0 o 140 —a
0 0 - —a 1 |

Thus, we see that R! is centrosymmetric and tri-diagonal.

Equation (5.102) provides a closed form expression for the inverse of a Hermitian
Toeplitz matrix in terms of the matrices A, and D,. However, since these matrices may be
built up recursively using the Levinson-Durbin recursion, we may fold this recursion into
the evaluation of Eq. (5.102) and derive a method for recursively computing the inverse of
R,. In particular, given

-1 —1AH
R, =AD'A; (5.103)
we may find

R =A;. D} A%, (5.104)

260 THE LEVINSON RECURSION

To see how this may be accomplished, let us partition A;4+; and D; 4, as follows’

a,(+D
A : A; | af
Ajpr = o = [(5.105)
i____‘_lf+1(1) 0 | 1
| O 0 1]
and
_ 0
D;!
D}, = / g (5.106)
i 0
Peml
i 0 e 0 : 6j+1]
Incorporating Eqs. (5.105) and (5.106) into Eq. (5.104) we have
I AL T | I L I AT 10
it] — | H]
7 Lomi 1 || o7 e LR
[p-laH
_ D7AT 1 0
| o7 Pl Gm@5)" e
— AD'AT + el @k)" | elak, (5.107)
| IRICHN €
Splitting this expression for Rj__:, into a sum as follows
1A H | “R (zR \H | 2R
R = _.éf_l_)_L__éi-_j__(_)_- + ¢! __i_l!_":.l_(.&_l!_":'_?-..-L?Z_Jcl__ (5.108)
Jj+l T 1 j+l1 -R \H 1 :
0 10 (a;yy) o1

we see that Rj_l appears in the upper-left corner of the first term and that the second term
may be written as an outer product

(5.109)

"Note to the reader: Although there is nothing difficult about the following derivation from a mathematical point
of view, from a notational point of view it is a bit complex. Since there is not much to be gained in going through
this derivation, other than a feeling of accomplishment, the reader may wish to jump to the main results which are
contained in Egs. (5.110) and (5.114). Although the discussion following Eq. (5.114) uses these results to derive
the general Levinson recursion, this recursion is re-derived in the following section, without using these results.

THE LEVINSON-DURBIN RECURSION 261

Therefore, we have

R7'0 1
R = |~ | T o an@” (5.110)
i J

which s the desired update equation for Rj_l . The recursion is initialized by setting Ral =1,

€y = ry(0), and ag = 1. Then, from Rj_ e > and a;, the Levinson-Durbin recursion is used
to determine a;; and €;; which, in turn, are then used in Eq. (5.110) to perform the update
of Rj'l . The following example illustrates the procedure.

Example 5.2.12 Recursive Evaluation of an Inverse Autocorrelation Matrix

In this example we show how to recursively compute the inverse of the 3x3 autocorrelation
matrix

1 12 12
Ra=| 12 1 172
12 172 1

Initializing the recursion we have
ao=1; e=r0=1 ; R'=1
Then, using the Levinson-Durbin recursion to calculate the first-order model
[=—=r:(1)/r:(0) = —1/2

and

Computing the first-order error
€ =€ [l —T}]=3/4

we find the inverse of R; to be

[R;' 0 1
Ri'=| " + —af @)’
0 0 €1

_| ' +;—1 _1/2 [-12 1]

_| 43 (5.111)
| —2/3 43

262 THE LEVINSON RECURSION

Using the Levinson-Durbin we next generate the second-order model. With

i =r(Q+ai(Dre(1) =1/4
I, =—n/er=-1/3
& =e€[l-T3]=2/3

we find, for a,,

1 0 1
1
m=| -1/2 |[-3| =12 |=]| -1/3
0 1 -1/3
Therefore the inverse of R is
R' 0 1
Ry'=| + —af @)’
0 0 €
[43 —2/3 0 —1/3
3
=| -23 43 o |+5| -13 [-13 —13 1]
0 0 0 1

[32 —12 -2
=| —-1/2 32 -1/2 (5.112)
| -12 -1/2 32

which is the desired result.

A slight variation of the recursion given in Eq. (5.110) may be derived by exploiting the
Toeplitz structure of R,. Specifically, since

JR,J=R;

where] is the exchange matrix, taking the inverse of both sides of this equation, using the
fact that J=!' = J, we find

-1 _ —1*
R, =JR;')J
Applying this transformation to the expression for Rjj:l given in Eq. (5.110) we have

_ o ®) 10 1 .
R, =JR;)T=1J (,)T --------- I+ aJ(a}L) CHADED | (5.113)

R

THE LEVINSON-DURBIN RECURSION 263

Simplifying the expression on the right by multiplying by the exchange matrices, we find

~ , 1
R = |- oo + flaj+laﬁl (5.114)
+

which is the desired recursion.
In the next section, we derive the Levinson recursion which may be used to solve a
general set of Toeplitz equations of the form

Rpx, = b, (5.115)

where b, = [b(O), b, ..., b(p)]T is an arbitrary vector. Here, we will derive an
equivalent form of the recursion that is based on the recursion given in Eq. (5.110). The
derivation proceeds as follows. Suppose that we are given the solution to the Toeplitz
equations R;x; = b, and that we want to derive the solution to

Rit1Xj+1 = bjp (5.116)

where

(R0 { .,
= |l by + ——af (@R)b
Xjt1 PO j+1 + on af (af) b
X; 1 H
= (; +a[(af+1) bj+l]af+1 (.117)
or
X .
Xjp1 = |- | + ek, (5.118)
0 €41’
where
H J+l
a1 = (@) b =Y b ®a (G +1-k) (5.119)
k=0

Equations (5.118) and (5.119) along with the Levinson-Durbin recursion for performing
the updates of a; constitute the Levinson recursion.

264 THE LEVINSON RECURSION

5.3 THE LEVINSON RECURSION

We have seen how the Toeplitz structure of the all-pole normal equations is exploited in the
Levinson-Durbin recursion to efficiently solve a set of equations of the form

R,a, = ;0 (5.120)

where R, isa (p+ 1) x (p+ 1) Hermitian Toeplitz matrix and u; is a unit vector. There are
many applications, however, that require solving a more general set of Toeplitz equations

R,x,=b (5.121)
where the vector on the right-hand side is arbitrary. For example, as we saw in Chapter 4,
Shanks’ method requires solving a set of linear equations of this form. In addition, we will

see in Chapter 7 that the design of an FIR digital Wiener filter requires finding the solution
to the Wiener-Hopf equation

Rya, =1y,
where R,, is a Toeplitz matrix and ry, is a vector of cross-correlations that is, in general,
unrelated to the elements in R,. Therefore, in this section, we derive the original recursion
developed by N. Levinson in 1947 for solving a general set of Hermitian Toeplitz equations
of the form given in Eq. (5.121) where b is an arbitrary vector. This recursion, known as
the Levinson recursion, simultaneously solves the following two sets of linear equations

re(0) rz(l) re@ () 1 €
rx(1) rx(0) ry(1) (=1 a;(1) 0
re(2) rx(1) r«(0) (G —=2) a2y [=| O (5.122)
| () (G- rn(G=2) - @ || a()] | 0]
and
@ oy @ - 2 |[xo] [b0]
re(1) r:(0) re(1) (G =1 xj(1) b(1)
rx(2) rx(1) rx(0) (=2 x(2) | =| b®2 (5.123)
| n() nG=D nG=2 - KO [5G | [a0]
for j =0,1,..., p. Since Eq. (5.122) corresponds to the all-pole normal equations, we

will find that, embedded within the Levinson recursion, is the Levinson-Durbin recursion.
In Section 5.2.9 we used the Toeplitz matrix inverse recursion to derive one form of the
Levinson recursion. Here, we will rederive the recursion without using this matrix inverse
recursion. The derivation, in fact, will closely resemble that used for the Levinson-Durbin
recursion in Section 5.2.

The Levinson recursion begins by finding the solution to Egs. (5.122) and (5.123) for
Jj = 0. The result is clearly seen to be

€ =rx(0) and xo(0) = b(0)/r(0)

Now let us assume that we know the solution to the jth-order equations and derive the
solution to the (j + 1)st-order equations. Given the solution a; to Eq. (5.122) the Levinson-

THE LEVINSON RECURSION

265

Durbin update equation (5.14) gives us the solution a;. to the (j + 1)st-order equations

[L0 () ro) G+ | 1] [en
) RO G =1) ajm1(1) 0
nG) rG-1) - O) a410j) 0

| nG+D () r@® r©® J|lang+n]| | 0

(5.124)

Exploiting the Hermitian Toeplitz property of R, i, if we take the complex conjugate of
Eq. (5.124) and reverse the order of the rows and columns of R; 4|, Eq. (5.124) may be
written in the equivalent form

[L@)
re(1) r«(0)
() r(G=1) .-
| G +D ()

rG) G+ |
G =1)

@ r1)

re) r,(0)

at, G +1)

a1 (j)

a; (1)

1

0

€

(5.125)

*
Jj+1

Since it is assumed that the solution x; to Eq. (5.123) is known, suppose that we append a
zero to X; and then multiply this extended vector by R; 1, as we did in the Levinson-Durbin
recursion. This leads to the following set of linear equations

O rGy G+ |
reD) @ e rEG=1))
r() rG=1 o rn©)

| RGHD () re(l) r(0)

where §; is given by

-xj(O) -
x;(1)

x;(j)
0

j .
8§ =Y r(j+1—i)x()
i=0

- b(O) -
b(1)

b(j)
Ly

(5.126)

Since §; is not, in general, equal to b(j + 1), the extended vector [ij, 0] is not the solution
to the (j + 1)st-order equations. Consider what happens, however, if we form the sum

[%0] [@, G+D) |
x;(1) a1 (j)
R;i : +gj+1 :
x;(Jj) ai (1)
L 0 - L 1 -

*
| 8 +agjri€7,

b(0)
b(1)

b(j)

(5.127)

266 THE LEVINSON RECURSION

where g;41 is an arbitrary complex constant. If we set

b(j+1)—8;
gj+1 _bUADy — ! (5.128)

€i+1

then
8 + g€/, =b(j+1)
and the vector

x;(0) a, G+
x;(1) a; ()
Xj+1 = : +gj+1 : (5.129)
% () ay (D
- 0 - - 1 -

is the desired solution. Note that since ¢; is real, the complex conjugate in Eq. (5.128)
may be neglected. Thus, the Levinson recursion, as summarized in Table 5.6, is defined by
Eqgs. (5.128) and (5.129) along with the Levinson-Durbin recursion.

Example 5.3.1 The Levinson Recursion

Let us use the Levinson recursion to solve the following set of Toeplitz equations,

4 2 1 x(0) 9
2 4 2 x(1) |=] 6
1 2 4 x(2) 12

The solution is as follows.
1. Initialization of the recursion.
¢ =r(0)=4
x0(0) = b(0)/r(0) =9/4
2. For j =0, .
vo=r()=2
I = —p/eo=-1/2
Therefore we have, for the first-order model,
1 1
Iy -1/72
Continuing we have,
€@ = 60[1 — |r1|2] —4(1 —1/4) =3
8 = x0(0)r(1) =2(9/4) =9/2
[p) =&/ =6 —-9/2/3=172

qi

THE LEVINSON RECURSION 267

Table 5.6 The Levinson Recursion

1. Initialize the recursion
(a) ap(0) =1
(b) x0(0) = b(0)/r:(0)
(©) €0 = rc(0)
2. Forj=0,1,...,p—1
@ y=rG+D+ Y aOnG =i+
(b) Tivi=-vi/€
© Fori=1,2...,j _
a@) =a;()+Tina(j—i+1)
(d) (G +1)=Tn
(e) €+1 = €1 = Tjul?]
O =Y., xOrG-i+D
(&) qin =6+ 1) —§1/€n
(h Fori=0,1,....j
X1 (D) = x; () + gjna;, (G —i+ 1)
(1) i+ 1) =g

which leads to the first-order solution

0 1 0 1 1/2
3. For j = | we find that

n=r@+ar1)=1+2(-1/2)=0

Therefore, I’ = 0 and the second-order model is simply

a)
a =
0
In addition, €, = €| and

2
& = [x,(o), X|(1)] |: " :I =2+2(1/2)=3

r(D)
@ = [b@-8]/0=02-3/3=3
Thus, the desired solution is
x1(0) a(2) 2 0 2
xx=| x () [+ @) |=| 172 |+3] 172 | =] -1
0 1 0 1 3

268 THE LEVINSON RECURSION

The General Levinson Recursion

function x=glev(r,b)
%
r=r(:);
p=length(b);
a=1;
x=b(l)/r(l);
epsilon=r(1l);
for j=2:p;
g=r(2:3j)'*flipud(a);
gamma=-g/epsilon;
a=[a;0] + gamma*[0;conj(flipud(a))];
epsilon=epsilon*(l - abs(gamma)"2);
delta=r(2:j) ' *flipud(x);
q=(b(j)-delta) /epsilon;
x=[x;0] + g*[conj(flipud(a))l;
end

Figure 5.16 A MATLAB program for solving a set of Toeplitz equations of the form R,x, = b using
the general Levinson recursion.

We conclude this section by looking at the computational complexity of the Levinson
recursion. From Table 5.6 we see that at jth step of the recursion there are two divisions,
4(j + 1) multiplications, and 4 j + 3 additions. Since there are p steps in the recursion, the
total number of multiplications and divisions that are required is

p—1
D @4j+6)=2p"+4p
j=0

and the number of additions is
p—1
D @j+y=2p"+p
j=0

Therefore, the number of multiplications and divisions is proportional to p? for the Levin-
son recursion compared with p* for Gaussian elimination, and twice that required for the
Levinson-Durbin recursion. A MATLAB program for the general Levinson recursion is pro-
vided in Fig. 5.16. '

5.4 THE SPLIT LEVINSON RECURSION*

The Levinson-Durbin recursion provides an efficient algorithm for solving the pth-order
autocorrelation normal equations given in Eq. (5.5) using p? + 2p multiplications and p?
additions. It is possible, however, to reduce the number of multiplications by approximately
a factor of 2 while maintaining approximately the same number of additions using what is
known as the Splir Levinson Recursion [5]. The key to achieving this reduction is to replace
the predictor polynomials a; with symmetric vectors, s;, and use these instead of a; in a
“Levinson-like” recursion. Due to the symmetry of s;, only half of the coefficients need to

THE SPUT LEVINSON RECURSION® 269

be computed. What needs to be done to make this procedure work is to develop a recursion
for the symmetric vectors along with a procedure to find a, from the symmetric vectors.
The split Levinson algorithm was originally developed by Delsarte and Genin for the case
of real data [5]. Later they extended this work by developing a split Schur recursion along
with a split lattice filter structure [6]. Although split algorithms have also been developed
for the complex case [1, 2, 12], these algorithms are a bit more complicated. Therefore, in
this section we will restrict our attention to the case of real data and follow the development
originally presented in [5]. In the following chapter, we derive the split lattice filter structure.

From our development of the Levinson-Durbin recursion in Section 5.2.1, we have seen
that the solution to the pth-order normal equations is built up recursively from the sequence
of reflection coefficients I'; for j = 1, ..., p and the prediction error filters A;(z) as follows

Ai@) =A@+ AR () 5 A =1 (5.130)

where AR(z) = z7/A;(z™") is the reciprocal polynomial® If we replace z with z™' in

Eq. (5.130) and multiply both sides by z~/ we find, as we did in Section 5.2.1, that Af(z)
satisfies a similar recursion given by

Af@ =7"AR (@ + AL 5 Al =1 (5.131)

Let us now define a second set of polynomials, S;(z) and S]* (2), that are formed by setting
the reflection coefficient in Eq. (5.130) equal to I'; = 1 and I'; = —1, respectively,

Si@ = Aji(@) +27'AR () (5.132)
SH @) = A1) —27'AL (D (5.133)

These polynomials are referred to as the singular predictor polynomials.® By adding together
Egs. (5.130) and (5.131) we may relate S;(z) to A;(z) and Af(z) as follows,

(1+T)Si(2) = A;(@) + Af(2) (5.134)

Similarly, if we subtract Eq. (5.131) from Eq. (5.130) we find that the singular polynomial
S*(z) is related to A;(z) and Af(z) by

(1-THSF@ = 4;@) - Af @) (5.135)

If we denote the coefficients of the singular predictor polynomials S;(z) and S;‘(z) by s;(i)
and s;'(i), respectively,

J.
S =) sz
i=0

and
J
SH@) =) sf

i=0

8Recall that we are assuming that the coefficients a ; (k) are real. Therefore, A (z) is conjugate symmetric, Aj(z) =
A;.‘(z*) and, as aresult, the reciprocal polynomial has the form given here [compare this to the definition of A f (2)
given in Eq. (5.22)].

%It is interesting to note that the singular predictor polynomials are identical to the line spectral pairs that are of
interest in speech processing [4,23].

270 THE LEVINSON RECURSION

and lets; = [5;(0),...,s;()N]T and s}" = [s}"(O), ey s}"(j)]T be the singular predictor
vectors, then it follows from Egs. (5.134) and (5.135) that

1] [em]
a;j(1) aj(j—1)
(1+Tjs; = : + : (5.136)
ai(j—1) a;(1)
aq() | L 1)
and
R
a;(1) a(j—1
(1-Tps; = : - : (5.137)
ai(j—1 a;(1)
() | L 1)

Therefore, s; is a symmetric vector that is formed by taking the symmetric (even) part of
the vector a;, and sj‘." is an antisymmetric vector corresponding to the antisymmetric (odd)
part of a;.' Thus, §;(z) is a symmetric polynomial

$(z) =27/ 85z
and S}'(z) is an antisymmetric polynomial,
St =—-z778a™
and as a result, both have linear phase."!

We now want to show that s; and s}" satisfy a set of Toeplitz equations. Clearly from
Eq. (5.136) it follows that

(1+T)R;s; = R;a; + R;af
Therefore, since
R;a; = ¢;[1,0,...,0]"
and
Rjaf =¢[0,...,0,1]7

then

Rjs; =5[1,0,....0, 1]T (5.138)

101¢ is for this reason that the algorithm we are developing is called a “split” Levinson recursion, i.e., it splits the
predictor polynomial a; into its symmetric and antisymmetric parts.

we may also see this from the definitions of 5; (z) and Sf(z) given in Eqs. (5.132) and (5.133).

THE SPLIT LEVINSON RECURSION* 271

where we have defined
€
'L'j =
14T
Note that T; may be evaluated from r, (i) and the coefficients of the singular predictor vector
s; as follows

(5.139)

J
1= re(i)s; () (5.140)
i=0

Similarly for sj‘." we find that sj‘." satisfies the Toeplitz equations

T
Rjsf =77[1,0,...,0,-1] (5.141)
where
* €
o 1
i (5.142)

Given that s; and sj‘." satisfy a set of Toeplitz equations, we may now derive a recursion
for the singular predictor polynomials S;(z), similar to what we did for A;(z) and Af)
in the Levinson-Durbin recursion. To do this, we must first show how to express A;(z) in
terms of S;(z) and S;..(z). Beginning with Eq. (5.134) we have

Aj@) =1 +T)S) - Af @) (5.143)
Replacing j by (j + 1) in Eq. (5.132) and solving for A f (z) gives
AR (@) = 28411 () — 24;(2) (5.144)

Substituting Eq. (5.144) into Eq. (5.143) we find
Ai(@) =1 +T))8@) —2854+1(z) +zA;(2)

Therefore, solving for A;(z),

(1 -2A;(2)) =1 +T))S() — 2541(2) (5.145)

which is the desired relation. Using Eq. (5.145) we may now derive a recursion for S;(z).

We begin with the Levinson-Durbin recursion
Aj@) =AL(@+ Tz AR |2 (5.146)

and note from Eq. (5.132) that A f_, (z) may be expressed in terms of A;_;(z) and S;(z) as
follows,

AT () =28(2) — 2Aj-1(2)

Substituting this expression for Aj‘i, (z) into Eq. (5.146) we have

Aj@) = A411@ + T2 [25@ - 241)]

= (1-T)A-1@) +T;5@) (5.147)

272

THE LEVINSON RECURSION

Now, as we saw in Eq. (5.145), A; (z) may be written in terms of S; (z) and S (z). Therefore,
multiplying both sides of Eq. (5.147) by (1 — z)

(1 -2A;(2) =1 -T)A - 2)A;1(2) +T;(1 — 2) §;(2)

and using Eq. (5.145) to eliminate (1 —z)A;(z) and (1 —2z)A;_(z) we have, after combining
together common terms,

Sin1@ = 1 +27)5() — 82781 (2) (5.148)
where we have defined
8 =01-THA+T;-1) (5.149)
In the time-domain, Eq. (5.148) becomes
sty =s5;() + 50— 1) =855 — 1) (5.150)

which is referred to as the three-term recurrence.’> Expressed in terms of the singular
predictor vectors, this three-term recurrence is

5j+1(0) 5i(0) | 0 0
sip1(1) s;(1) 5;(0) 5;-1(0)
: =| : .y : (5.151)
Sj+1(J) s5i(J) ;=1 Si-1(j = 1)
| saG+D] L 0 | L sG) | | 0 i

Equation (5.148) or, equivalently, Eq. (5.151), gives us a method for computing the singular
predictor polynomial S;.(z) given the previous two polynomials, S;(z) and S;_;(z), and
the parameter §;. What is needed to complete the recursion is a method for computing
8;. Since the reflection coefficients I'; are not known, we cannot use Eq. (5.149) directly.
However, using Eq. (5.139) we see that
T; _ € j 14+ Fj-l
Tj-1 1+T; € i1

However, since €; = €;_1(1 — T'?), then

T a- F,?)(l +T1)

=1-T))1+T;- 5.152
- 1+T, (1 +T-1) (5.152)
which, from Eq. (5.149), is equal to §;. Therefore, §; may be evaluated using
§ = —L (5.153)
Tj-1

2This relation is called a three-term recurrence since there are three terms that are used to update the singular
predictor vector. By contrast, note that the Levinson-Durbin order update equation is a two-term recurrence.

THE SPUT LEVINSON RECURSION* 273

along with Eq. (5.140). Equations (5.140), (5.150), and (5.153) constitute the split Levinson
recursion for generating the singular predictor polynomials. The initial conditions required
to begin the recursion are

_ 1 R _
$G) = 737 [402) + AF@)] =2

Si(2) = A+ 77 'Af @) =1+ 77! (5.154)

Now that we have a recursion for S;(z), all that is left is to show how to derive the
prediction error filter A,(z) from the singular predictor polynomials. From Eq. (5.145)
with j = p we have

(1 =242 = +Tp)Sp() — 28p+1(2) (5.155)
Multiplying both sides by —z~! and solving for A,(z) gives
Ap(2) =27 'Ap@) + Sp11(@) — 27 (1 + T,) Sp(2) (5.156)

which, in the coefficient domain becomes

ap(j) = ap(j — D)+ 5p11(j) — (1 +Tp)sp(G — 1) (5.157)

With the initial condition a,(0) = 1 we thus have a recursion for the coefficients a, (j). All
that is missing is an expression for (1 + I';). However, this may be computed from s,
and s, as follows. Setting z = 1 in Eq. (5.155) we have
A+TS@| _ - Su@|_ =0 (5.158)
= =

Therefore, since

p+1

p
$@| _ =50 and @] _ =Y spald)
= i=0 = i=0

then

ptl

Zsp+1(i)

(14T,) = 5—— (5.159)

> spli)
i=0

The complete Split Levinson Recursion is summarized in Table 5.7. It is presented, however,
in a form that does not take full advantage of the symmetries in the polynomials S;(z). Inits
most efficient form, for example, the evaluation of the coefficients 7; would be accomplished
as follows
G=1/2
re@ + 12 = D |50 ; jodd

i=0
G=-h/2

> [r@+nG =d]s +rG25GR2) ;5 jeven

i=0

‘[j:

274 THE LEVINSON RECURSION

Table 5.7 The Split Levinson Recursion

1. Initialize the recursion

(@ sy=2ands, =[1,1]7

) 1 =r0)
2. Forj=12...p

@ =Y, s

() & =1/t

© 540 =54+ =1

(d) Fork=1,2,...,J

sip1(k) = s;(k) + 55k — 1) = 8551k — 1)
Set (1+T,) = 37 5,000/ 300 550)

4. Forj=1,2,...,p

@ a(N=a,(—-D+s,u()—-A+T)s(-1
5. Done

In addition, due to the symmetry of s;, only half of the coefficients need to be evaluated,
thereby reducing the number of multiplications and additions by approximately a factor of
two.

Although not included as a part of the split Levinson recursion in Table 5.7, it is also pos-
sible to compute the reflection coefficient recursively from the coefficients ;. Specifically,
solving Eq. (5.152) for I'; we find that

J

N=1—- ———
/ 1+T05

(5.160)

The initial condition for this recursion is [y = 0.

Example 5.4.1 The Split Levinson Recursion

Let us use the split Levinson recursion to find the predictor polynomial corresponding to
the autocorrelation sequence :

r=[4,1,1, -2]"

In order to make the discussion easier to follow, we will not employ the symmetry of s; in
our calculations.

1. Initialization of the recursion.

0 =r0)=4

[1]

S

THE SPLIT LEVINSON RECURSION*®

275

2. Forj =1,

1
‘L'|=[4, 1][1]=5 ; hh=1n/tn=5/4

Now, using Eq.(5.151) we have

1 0 0 1
S2= 1 |+ 1 |=5/4]1 2 |={ -1/2
0 1 0 1
3. For j =.2 we have
1
n=[4 1L1]| 12 | =92 ; & =rn/1u=09/2)1/5=9/10

1

Again using Eq.(5.151) to find s; we have

0 1 [o (o] [1
~1/2 1 1 —2/5

§3 = / + —-9/10 = /
1 —1/2 1 —2/5

0 1 0 1

4. Finally, for j = 3 we have

1

-2/5
n=[4,1 1, 2] / =6/5
-2/5

1

& = 13/12 = (6/5)(2/9) = 4/15

Again using Eq.(5.151) to find s, we have

1 0 0 1
—-2/5 1 1 1/3

sa=| =2/5 [+| =2/5 | =415 <102 |=| -2/3
1 -2/5 1 1/3

o | | 1 o | | 1

Finally, we compute the predictor polynomial with the help of Eqs. (5.157) and (5.159).

276 THE LEVINSON RECURSION

First, using Eq. (5.159) we have

-

s4(i)
(1473 =50 =5/3
> 536
i=0
Then, from Eq. (5.157) we have
1 0 1 0
az(1) 1 s4(1) 1
a; = ? = +| —(1+T3)
a3(2) a3 (1) 54(2) s3(1)
| a0 | | a® | | %0 | | 52 |
Incorporating the values for the singular predictor vectors gives
1 0 1
as(1) 1 —4/3
= +
a3(2) as(1) 0
| &) | a2 | | 1
Solving this equation recursively for the coefficients a3(i) we find
1
-1/3
a3 =
—1/3
2/3

5.5 SUMMARY

In this chapter, we have looked at several different algorithms for recursively solving a set of
Toeplitz equations. Each of these algorithms exploits the symmetries and redundancies of
the Toeplitz matrix. This chapter began with a derivation of the Levinson-Durbin recursion
for solving a set of Hermitian Toeplitz equations in which the right-hand side is a unit vector,

R,a, = €,uy (5.161)

Compared with O(p?) operations that are required to solve a set of p linear equations
using Gaussian elimination, the Levinson-Durbin recursion requires O (p?) operations. Us-
ing the Levinson-Durbin recursion we were able to establish some important properties of
the solution a, to these equations. It was shown, for example, that a, generates a mini-
mum phase polynomial if and only if the Toeplitz matrix R, is positive definite and, in

SUMMARY 277

this case, the reflection coefficients I'; that are generated by the Levinson-Durbin recursion
are bounded by one in magnitude, |[I’;| < 1. As a result, we were able to establish that
the all-pole models that are formed using Prony’s method and the autocorrelation method
are guaranteed to be stable. We were also able to demonstrate that if R, > 0, then r,(k)
for k = 0,1,..., p represents a valid partial autocorrelation sequence and may be ex-
tended for k > p. This extrapolation may be performed by setting [I'x| < 1 fork > p
and finding the corresponding autocorrelation sequence using the inverse Levinson-Durbin
recursion.

In addition to the Levinson-Durbin recursion, we derived a number of other “Levinson-
like” recursions. For example, with the view that the Levinson-Durbin recursionis a mapping
from a set of autocorrelations . (k) to a set of filter coefficients a, (k) and a set of reflection
coefficients I';, we saw that it was possible to derive recursions to find the filter coefficients
from the reflection coefficients (step-up recursion), the reflection coefficients from the filter
coefficients (step-down recursion), and the autocorrelation sequence from the reflection
coefficients and the modeling error €, (inverse Levinson-Durbin recursion). Two additional
recursions that were developed for solving equations of the form given in Eq. (5.161)
are the split Levinson recursion and the Schur recursion. The split Levinson recursion
reduces the computational requirements of the Levinson-Durbin recursion by approximately
a factor of two by introducing the set of singular vectors s;. The Schur recursion, on the
other hand, achieves some modest computational savings by generating only the reflection
coefficients from the autocorrelation sequence. The main advantage of the Schur recursion
over the Levinson-Durbin and split Levinson recursions, however, is that it is suitable
for parallel processing in a multiprocessor environment. Finally, we derived the general
Levinson recursion for solving a general set of Toeplitz equations of the form

R,a, =b (5.162)

where b is an arbitrary vector. As with the Levinson-Durbin recursion, the general Levinson
recursion requires O (p?) operations.

In addition to the recursions developed in this chapter, there are other fast algorithms that
may be of interest. With respect to the problem of signal modeling, one particular algorithm
of interest is the fast covariance algorithm for solving the covariance normal equations
given in Eq. (4.127). As with the Levinson and the Levinson-Durbin recursions, the fast
covariance algorithm requires on the order of p? operations. Although the approach that is
used to derive the fast covariance algorithm is similar in style to that used for the Levinson
recursion, it is considerably more involved. For example, the fast covariance algorithm
requires a time-update recursion in addition to the order-update recursion that is found in
the Levinson recursion. This time-update recursion relates the solution to the covariance
normal equations over the interval [L, U] to the solution that is obtained over the intervals
[L+1,U]land [L, U — 1]. The details of this recursion may be found in [18, 19]. Another
recursion of interest is the Trench algorithm, which generalizes the Levinson recursion by
allowing the Toeplitz matrix to be non-symmetric {10, 25]. The Trench algorithm therefore
may be used to solve the Padé equations and the modified Yule-Walker equations. In its most
general form, the Trench algorithm gives both the inverse matrix along with the solution x,,
to Eq. (5.162). Finally, it should be noted that, in addition to the “Levinson-like” recursions,
there are other fast algorithms for solving linear equations that have other types of structured
matrices such as Hankel and Vandermond matrices [8, 15].

278 THE LEVINSON RECURSION

References

1. Y. Bistritz, H. Lev-Ari, and T. Kailath, “Complexity reduced lattice filters for digital speech
processing,” Proc. 1987 Int. Conf. on Acoust., Speech, Sig. Proc., pp. 21-24, April 1987.

2. Y. Bistritz, H. Lev-Ari, and T. Kailath, “Immittance-type three-term Schur and Levinson recur-
sions for quasi-Toeplitz and complex Hermitian matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 12, no. 3, pp. 497-520, July 1991.

3. R. V. Churchill and J. W. Brown, Complex Variables and Applications, McGraw-Hill, New York,
1990.

4.]. R. Deller, J. G. Proakis, and J. H. L. Hansen, Discrete-time Processing of Speech Signals,
MacMillan, New York, 1993.

5. P. Delsarte and Y. V. Genin, “The split Levinson algorithm,” IEEE Trans. Acoust., Speech, Sig.
Proc., vol. ASSP-34, no. 3, pp. 470-478, June 1986.

6. P. Delsarte and Y. V. Genin, “On the splitting of classical algorithms in linear prediction theory,”
IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-35, no. 5, pp. 645-653, May 1987.

7. J. Durbin, “The fitting of time series models,” Rev. Internat. Statist. Inst., vol. 23, pp. 233-244,
1960.

8. I. Gohberg, T. Kailath, and L. Koltracht, “Efficient solution of linear systems of equations with
recursive structure,” Lin. Alg. Appl., vol. 80, no. 81, 1986.

9. 1. Gohberg, ed., I. Schur Methods in Operator Theory and Signal Processing, vol. 18, Birkhiuser,
Boston, 1986.

10. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Balti-
more, 1989.

11. M. H. Hayes and M. A. Clements, “An efficient algorithm for computing Pisarenko’s harmonic
decomposition using Levinson’s recursion,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-
34, no. 3, pp. 485-491, June 1986.

12. H. Krishna and S. D. Morgera, “The Levinson recurrence and fast algorithms for solving Toeplitz
systems of linear equations,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-35, no. 6,
pp- 839-848, June 1987.

13. S. Y. Kung and Y. H. Hu, “A highly concurrent algorithm and pipelined architecture for solving
Toeplitz systems,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-31, pp. 66-76, Feb. 1983.

14. S. Lang and J. McClellan, “A simple proof of stability for all-pole linear prediction models,”
Proc. IEEE, vol. 67, pp. 860861, May 1979.

15. H. Lev-Ari and T. Kailath, “Triangular factorization of structured Hermitian matrices,” in Schur
Methods in Operator Theory and Signal Processing, 1. Gohberg, Ed., vol. 18, Boston, Birkhiuser,
1986.

16. N. Levinson, “The Wiener rms error criterion in filter design and prediction,” J. Math. Phys., vol.

25, pp. 261-278, 1947.

J. Makhoul, “On the eigenvalues of symmetric Toeplitz matrices,” IEEE Trans. Acoust., Speech,

Sig. Proc., vol. ASSP-29, no. 4, pp. 868-872, Aug. 1981.

18. J. H. McClellan, “Parametric Signal Modeling,” Chapter | in Advanced Topics in Signal Process-
ing, Prentice-Hall, NJ, 1988.

19. M. Morf, B. W. Dickenson, T. Kailath, and A. C. G. Vieira, “Efficient solution of covari-
ance equations for linear prediction,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-25,
pp- 429-433, Oct. 1977.

20. L. Pakula and S. Kay, “Simple proofs of the minimum phase property of the prediction error
filter,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-31, no. 2, pp. 501, April 1983.

21. R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison Wesley, Reading, MA. 1987.

22. 1. Schur, “On power series which are bounded in the interior of the unit circle,” J. Reine Angew.
Math., vol. 147, pp. 205-232, 1917, vol. 148, pp. 122-125, 1918. (Translation of Parts I and II
may be found in I. Gohberg, pp. 31-59 and 61-88).

17

PROBLEMS 279

23. F. K. Soong and B.-H. Juang, “Line spectrum pair (LSP) and speech compression,” Proc. 1984
Int. Conf. on Acoust., Speech, Sig. Proc., pp. 1.10.1-1.10.4, March 1984,

24. S. Treitel and T. J. Ulrych, “A new proof of the minimum-phase property of the unit predic-
tion error operator,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-27, no. 1, pp. 99-100,
February 1979.

25. W. F. Trench, “An algorithm for the inversion of finite Toeplitz matrices,” J. SIAM, vol. 12, no. 3,
pp. 512-522, 1964.

26. R. A. Wiggins and E. A. Robinson, “Recursive solution to the multichannel filtering problem,”
J. Geophys. Research, vol. 70, no. 8, pp. 1885-1891, April 1965.

27. A. Vieira and T. Kailath, “On another approach to the Schur-Cohn criterion,” /EEE Trans. Circ.
Syst, CAS-24, no. 4, pp. 218-220, 1977.

5.6 PROBLEMS

5.1. Given the autocorrelation sequence
re@®=1, r.(1)=08 r,(2)=05 r,(3) =01

find the reflection coefficients, I';, the model parameters, a;(k), and the modeling errors,
g,forj=1,2,3.

5.2. Let A,_,(z) be a polynomial of order (p — 1) of the form

p—1
Apni1(@) =1+ Z ap- k)z* P5.2-1)
k=1

andletT";, Ty, ..., I'p_ be the reflection coefficients that are generated by the Levinson-
Durbin recursion. A pth-order polynomial is formed via the Levinson update equation as
follows

Ap(@) = Ap1(2) +Tpz P A, (1/2%)

(@ If|Ij] < 1for j=1,...,p—1andif [['p| = 1, what can be said about the location
of the zeros of Ap(z)?

(b) Suppose A,(z) may be factored as
P
Ap@) =[]0 —az™)
k=1

i.e., the zeros of Ap(2) are at oy, az, ..., ap. If Z,,(z) is a polynomial with reflection
coefficients I'; where
T = ry for j=12,...,p—1

~

T, =1/T;

~

How are the zeros of A p(2) related to those of A,(2)?

(c) If we consider A,(z) in (P5.2-1) to be a continuous function of the reflection coefficient
I, using your results derived in parts (a) and (b), describe how the zeros move in
the z-plane as I, is varied in a continuous fashion from some number, say ¢, to its
reciprocal, 1/¢.

280 THE LEVINSON RECURSION

5.3. Let a, (k) be the filter coefficients corresponding to the reflection coefficients I'y, for
k=12, ...p.

(a) Prove that if the reflection coefficients are modulated by (—1)*
L = (=D'Ty
then the new set of filter coefficients 4, (k) are
a,(k) = (—=Dtap (k)
(b) Can you generalize the result in part (a) to the case in which
fk = afIy

where « is a complex number with [a| = 1? What about if | < 1?

5.4. For the reflection coefficient sequence
M=ok ; k=1,2,...

with |a| < 1, prove that the zeros of the polynomials A, (k) lie on a circle of radius « for
every p > 1.

5.5. Without factoring any polynomials, determine whether or not a linear shift-invariant
filter with system function

_ 14+0827'—09z7%+03z7°
1-09z7'+0.822—0.5z3
is minimum phase, i.e., all the poles and zeros are inside the unit circle.

H(z)

5.6. Consider the signal '
x(n) = 8(n) + bd(n — 1)
Suppose that we observe x(n) forn =0,1,..., N.

(a) Using the autocorrelation method, find the 2nd-order all-pole model for x(n).

(b) Suppose we want to find a p-pole model for x(n). Let I'; denote the jth reflection
coefficient of the lattice filter implementation of the all-pole model. Find a recursion
for the reflection coefficients that expresses I'; in terms of I';_; and I"; 5.

5.7. Suppose we have a data sequence whose z-transform is of the form:

.G
X@=—

1+ Z ap kyz*
k=1
although the value of p is unknown. The coefficients of the model are computed using

Levinson’s recursion. How can the value of p be determined by looking at the sequence of
reflection coefficients I'; for j = 1,2, ...7

5.8. Let r, (k) be a complex autocorrelation sequence given by
r, =2, 0.5(1+), 055]"

Use the Levinson-Durbin recursion to solve the autocorrelation normal equations for a
second-order all-pole model.

PROBLEMS 281

5.9. Determine whether the following statements are True or False.

(a) If r, (k) is an autocorrelation sequence with r, (k) = O for |k| > p then I’ = O for
k| > p.
(b) Given an autocorrelation sequence, r, (k) fork = 0,...,p,ifthe (p + 1) x (p+ 1)
Toeplitz matrix
R, = Toep{r:(0), rx(1), ..., ry(p)}

is positive definite, then

= [r0), ..., 7:(p).0,0,...]

will always be a valid autocorrelation sequence, i.e., extending r, (k) with zeros is a
valid autocorrelation extension.

(c) If ry(k) is periodic then I'; will be periodic with the same period.

5.10. In our discussions of the Levinson-Durbin recursion, we demonstrated the equiva-
lence between the following three sets of parameters:

b rx(o)vrx(l)s---,rx(p)
* ap(l),a,(2),...,a,(p), b0)
‘F],F2,...,F[,,€p

For each of the following signal transformations, determine which of these parameters
change and, if possible, describe how.

(a) The signal x(n) is scaled by a constant C,
x'(n) =Cx(n)
(b) The signal x(n) is modulated by (—1)",
x'(n) = (=1)"x(n)
5.11. The autocorrelation of a signal consisting of a random phase sinusoid in noise is
re(k) = P cos(kawyg) + 028(k)

where wy is the frequency of the sinusoid, P is the power, and o2 is the variance of the

noise. Suppose that we fit an AR(2) model to the data.

(a) Find the coefficients a, = [1, a2(1), a2(2)]7 of the AR(2) model as a function of wy,
o2, and P. '

(b) Find the reflection coefficients, I') and I',, corresponding to the AR(2) model.

() WZhat are the limiting values of the AR(2) parameters and the reflection coefficients as
o, —> 0?

5.12. Given that r.(0) = 1 and that the first three reflection coefficients are I’y = 0.5,
', =0.5,and I'; = 0.25,
(a) Find the corresponding autocorrelation sequence r, (1), r.(2), . (3).

(b) Find the autocorrelation sequence r, (1), . (2), r,(3) for the case in which the reflection

coefficient I'; is a free variable, i.e., solve for the autocorrelation values as a function
of F3 .

(c) Repeat part (b) when both I'; and I'; are free parameters.

282 THE LEVINSON RECURSION

5.13. Using the autocorrelation method, an all-pole model of the form
b(0)
l+a(Dz7'+a@z2+4+aB)z3
has been found for a signal x(n). The constant in the numerator has been chosen so that the
autocorrelation of the signal matches the autocorrelation of the model, i.e.,
ro(k) = rp(k)
where r;, (k) is the autocorrelation of /(x). In addition, you know the following about the
signal and the model:
1. r,(0)=4
2. '3 =05
3.I'1>0andTI, >0
4. x(0) =1
5. €3 = 11/16, where €3 is the third-order modeling error.
6. det(R;) = 27, where Ry, = Toep{r,(0), ri:(1), ry(2)}.

H(z) =

Find the values for the model parameters
a(l), a(?), a@), and b(0)

5.14. The first seven values of the unit sample response, £(n), of a 3rd-order linear shift-
invariant filter

H - L +b()z7"' +b(2)z72+b3)z7?
1+a()z7 ' +a)z2+aB)z?
are given by
h=[1, 1/4, 1/2, 1, 0, 0, 7/8]"
Determine whether or not the filter is stable. If more information is needed, state what is

required and make the necessary assumptions.

5.15. Theextendibility problem in power spectrum estimation concerns the issue of whether
or not a finite length sequence,

re(1), re(2), r: (), ..., r(p)

may be extended (extrapolated) into a legitimate autocorrelation sequence so that

o0

P(e) = Y ro(kye (P5.15-1)

k=—00
is a valid power spectrum. In other words, is it possible to find values of r, (k) for (k| > p
such that P,(e/?) in (P5.15-1) is a non-negative real function of w?
(a) Develop a procedure that uses Levinson’s recursion to test the extendibility of a se-
quence.
(b) Use your procedure developed in (a) to determine the constraints on a and b that are
necessary and sufficient in order for the sequence
@ =1 rn)=a r2)=b

to be an extendible sequence.

PROBLEMS 283

(c) Assuming that the sequence in (b) is extendible, find two different legitimate extensions.

5.16. Which of the following autocorrelation sequences are extendible? For those that are
extendible, find an extension and determine whether or not the extension is unique.

(@ r, =[1.0, 0.6, 0.6]"
() r, = [1.0, 0.6, —0.6]"
() r, =[1.0, 0.0, 1.0]"

5.17. Let Rj be the symmetric Toeplitz matrix formed from the autocorrelation sequence
re(0), rc(1), ry(2), and r,(3). If the reflection coefficients that result from applying the
Levinson-Durbin recursion to R are

=31 o=
and if . (0) = 1, find the determinant of Rj.

l—‘3=‘l‘

W —

5.18. Letr. (k) = afS(k) -+ 1. Find the reflection coefficients I'; for all £ > 0 and find the
all-pole models A, (k) forall p > 1.

5.19. A pth-order all-pole model for a signal x (n) is parameterized by the p + 1 parameters
€p and a, (k). Since the reflection coefficients I';, for a stable model are bounded by one in
magnitude, they are automatically scaled. In speech processing, therefore, there has been
an interest in coding a speech waveform in terms of its reflection coefficient sequence.
The relationship between a reflection coefficient sequence and the spectrum, however, is
not easily discernable. Consider, for example, the following three reflection coefficient
sequences

LI =——
T F1
1
2.0 = ———
* k+1
(=*
3.1, =
Tk

Although the only difference between these reflection coefficient sequences is in terms of
the sign of I'y, the power spectra are quite different. For each of these sequences, find
the corresponding autocorrelation sequence, r, (k), and power spectrum, P, (¢/“), in closed
form. :

5.20. Let x(n) be a random process with autocorrelation sequence
re(k) = (0.2)"

(a) Find the reflection coefficients I') and I'; for a second-order predictor and draw the
lattice filter network.

(b) Suppose that uncorrelated white noise with a variance of o2 = 0.1 is added to x(n),
y(n) = x(n) + w(n)

How do the reflection coefficients change?

(¢) Can you make any general statements about the effect on the reflection coefficients
when white noise is added to a process?

284 THE LEVINSON RECURSION

5.21. The reflection coefficients corresponding to a third-order all-pole model are
r=025 TI,=050 TI3=025
and the modeling error is given by
€3 = (15/16)*
(a) Find the direct form filter coefficients, a;(k), for this third-order model.

(b) Find the autocorrelation values r,(0), 7. (1), r.(2), and r,(3) that led to this model.

(c) If a fourth-order model were found for x (n), what value or values for r, (4) result in the
minimum model error, €47

(d) Repeat part (c) and find the value or values for r, (4) that produce the maximum error,
€4.

5.22. The reflection coefficients for a two-pole model -of a signal x(n) are I';y = 0.25 and
'y = 0.25 and the “modeling error” is €; = 9.

(a) If r,(3) = 1 find the modeling error, €3, for a three-pole model.

(b) Ifthe signal values, x (n), are multiplied by 1/2, i.e., y(n) = 0.5x(n), find the reflection
coefficients and the modeling error for a two-pole model of y(n).

5.23. You are given the following sequence of autocorrelation values
r. = [10, -1, 0.1, —1]"
(a) Use the Schur recursion to find the reflection coefficient sequence I'y, I'p, I's.

(b) What is the final generator matrix, Gs, equal to?

(c) Find the modeling error, €3.

5.24. Let r,(0), r: (1), ..., re(p) be a set of autocorrelation values and let R, be the cor-
responding (p + 1) x (p + 1) autocorrelation matrix. Show that

detR, detR,_
1— 2= e 2
[det Rp_l]
where I',, is the pth reflection coefficient.
5.25. If [T';| < 1, derive a bound for the coefficients §; in the split Levinson recursion.

5.26. Let h, (n) be the FIR least squares inverse filter of length N with delay n¢ for a
sequence g(n), i.e.,

hno(n) x g(n) = 8(n — ng)
The coefficients h,, (n) are the solution to the Toeplitz equations (see p. 174 in Chapter 4)
Rehy, = gn, (P5.28-1)

which may be solved efficiently using the Levinson recursion. Since the value for the delay
ng that produces the smallest least squares error is typically unknown, to find the optimum
value for ng these equations must be solved for each value of ng, beginning with ny = 0.
Instead of using the Levinson recursion to solve these equations repeatedly, it is possible to

COMPUTER EXERCISES 285

take advantage of the relationship between g,, and g, 41,

[g (o)] [g*o+1)]
g*(no— 1 g*(ng)
Fa()] g*(1)
gny = 30 8o+l =
0 £*(0)
0 0

to derive a recursion for A, (n). In this problem we derive this recursion which is known as
the Simpson sideways recursion [26].

(a) The solution to Eq. (P5.28-1) for ny = 0 may be found using the Levinson-Durbin
recursion. Show how to generate the solution for np = 1 from the solution for np = 0
in less than 4N multiplications and divisions where N is the length of the inverse filter
h,,. Note that any information generated in the Levinson-Durbin recursion (for ng = 0)
can be used to construct the new solution.

(b) Generalize the result of part (a) to obtain a recursion that will successively construct the
solution for all ny > 0. Again your method should have less than 4N multiplications
and divisions at each step.

(c) Write an expression for the error £,, at the ngth step of the recursion in terms of the
coefficients g(n) and the coefficients of the least squares inverse filter 4, (n).

(d) Write a MATLAB program that implements the Simpson sideways recursion.
(e) How can this recursion be used to find the inverse of a Toeplitz matrix?

M co mputer Exercises

C5.1. Modify the m-file rtog . mto find the Cholesky (LDU) decomposition of a Hermitian
Toeplitz matrix R,. Compare the efficiency of your m-file with the MATLAB Cholesky
decomposition program chol .m.

C5.2. The inverse Levinson-Durbin recursion is a mapping from the sequence of reflection
coefficients I'; to the autocorrelation sequence 7, (k). Beginning with r, (0), the autocorrela-
tions r, (k) for k > 0 are determined recursively. In this problem, we derive and implement
another approach for the recovery of the autocorrelation sequence.

(a) Beginning with the normal equations
Rya, = €pu
rewrite these equations in the form
A,r, = €,u

where A, is a matrix containing the pth-order model coefficients a,(k) and r, is the

286 THE LEVINSON RECURSION

vector containing the autocorrelation values that are to be determined (assume that the
data is complex). What is the structure of the matrix A, and how may it be generated?

(b) Write a MATLAB program that will set up these equations and solve for the autocorre-
lation sequence.

(c) Compare the complexity of this solution to the inverse Levinson-Durbin recursion.

C5.3. The Schur recursion is a mapping from the autocorrelation sequence r, (k) to a set
of reflection coefficients.

(a) Write a MATLAB program that implements the Schur recursion. Using the £1ops com-
mand, compare the efficiency of the Schur recursion to the Levinson-Durbin recursion
to find the reflection coefficients I'; from an autocorrelation sequence r (k).

(b) Derive the inverse Schur recursion that produces the autocorrelation sequence 7, (k)
from the reflection coefficients I';, and write a MATLAB program to implement this
recursion. Compare the efficiency of the inverse Schur recursion to the inverse Levinson-
Durbin recursion to find the autocorrelation sequence from the reflection coefficients.

C5.4. Inthe derivation of the split Levinson recursion, we defined a new set of coefficients,
;. As we will see in Chapter 6, these coefficients are used in the implementation of a split
lattice filter.

(a) Show that these two sets of coefficients are equivalent in the sense that one set may be
derived from the other,

{l‘,, rz, cee F,,} > {8], 82, cee (Sp}

(b) Write a MATLAB program gtod . m that will convert the reflection coefficients I'; into
the split Levinson coefficients §;.

(c) Write a MATLAB program dtog .m that will convert the split Levinson coefficients §;
into a set of reflection coefficients I';.

(d) Use these m-files to study the relationship between the coefficients I'; and §;. For
example, what does the constraint |T';] < [imply about §;? What happens if I', = +1?
Is it possible to determine whether or not |I";| < 1 by simply looking at §;?

C5.5. The line spectral pair (LSP) coefficients were introduced in the 1980°s as an alter-
native to the filter coefficients a, (k) and the reflection coefficients I'; in the representation
of an all-pole model for a signal x(n). Given the prediction error filter A,(z), the LSP
representation is as follows. With S;(z) and Sj* (z) the singular predictor polynomials that
were introduced in the derivation of the split Levinson recursion, note that A,(z) may be
represented in terms of S,,(z) and S;+l (z) as follows,

1
A = 5[S41Q) + 3 @]

Since the roots of Sy, (z) and S; +1(2) lieonthe unit circle, the angles of these zeros uniquely
define the singular predictor polynomials and, thus, the prediction error filter A,(z).

(a) Generate several different singular predictor polynomials, S, ;(z) and S;‘ +1(2), and
look at the locations of the roots of these polynomials. What relationship do you observe
between the locations of the roots of S, 1(z) and the roots of S;‘ 11(2)?

COMPUTER EXERCISES 287

(b)

©)

(@)

Each zero of A,(z) maps into one zero in each of the polynomials S,,(z) and S; 1(2).
Investigate what happens when a zero of Sp.(z) is close to a zero of S; +1(z). Does
this imply anything about the spectrum A, (e/*)?

Let 6; denote the angles of the roots of the polynomials S, (z) and SI’;‘+l (z) that lie
within the interval [0, 7r]. Assume that the angles are ordered so that ;| > 6, and let
ABp = Okt — Br. Write a MATLAB program 1sp.m that will produce the prediction
error filter A,(z) from the angles Af;.

Generate a number of different AR(12) processes by filtering unit variance white noise
with a 12th-order all-pole filter. Place the poles of the filter close to the unit circle,
at approximately the same radius, and at angles that are approximately harmonically
related to each other. Compare the accuracy in the model for x (n) when quantizing the
model coefficients a,, (k) to 16 bits and quantizing the LSP coefficients A8, to 16 bits.

LATTICE FILTERS

6.1 INTRODUCTION

In Chapter 5 we discovered how the reflection coefficients from the Levinson-Durbin recur-
sion may be used in a lattice filter implementation of the inverse filter A,(z). This structure
has a number of interesting and important properties including modularity, low sensitivity
to parameter quantization effects, and a simple test for ensuring that A,(z) is minimum
phase. As a result, lattice filters have found their way into many different and important
signal processing applications and have been used both for signal analysis and synthesis. In
this chapter, we look again at the lattice filter structure, derive some alternative lattice filter
forms, and explore how these filters may be used for signal modeling.

This chapter begins with a derivation of the FIR lattice filter structure in Section 6.2
where we explore the relationship between the lattice filter and the problems of forward and
backward linear prediction. In Section 6.3 we then develop the split lattice filter which is
based on the singular predictor polynomials and the split Levinson recursion. All-pole lattice
filters, allpass lattice filters, and pole-zero lattice filters are then considered in Section 6.4.
In Section 6.5 we then turn our attention to the use of lattice filters for all-pole signal
modeling. We derive three approaches that are based on the sequential estimation of the
reflection coefficients. These methods are the forward covariance method, the backward
covariance method, and Burg’s method. We also present a nonsequential method known as
the modified covariance method. Finally, in Section 6.6 we look at how the lattice methods
of signal modeling may be used to model stochastic signals.

6.2 THE FIR LATTICE FILTER

To derive the FIR lattice filter structure, we will proceed exactly as we did in Section 5.2.2,
beginning with the problem of all-pole signal modeling. Therefore, let x (n) be a signal that
is to be modeled as the unit sample response of an all-pole filter of the form

b(0)

Ap(2)

H(z) =

289

290 LATTICE FILTERS

As we saw in Section 4.4.3 of Chapter 4, with Prony’s method the coefficients of A,(z) are
found by minimizing the squared error,'

o0

& = Zlep(”)lz

n=0
where

P
ep(n) = x(n) xap(n) = x(n) + »_ ap(k)x(n — k)
k=1

with @,(0) = 1. Note that by minimizing £, we are solving for the coefficients ap (k) that
minimize the difference between x(n) and what may be considered to be an estimate or
prediction of x(n),

4
) == ayk)x(n—k)
k=1
This estimate is formed by taking a linear combination of the previous p values of x(n) and
is referred to as the forward predictor of x (n) and

ep(n) = x(n) —x(n)

is referred to as the pth-order forward prediction error. In order to distinguish between
the forward prediction error and the backward prediction error, which will be introduced
shortly, we will use the following notation,

P
er(n) =x(n)+ Y _ap(k)x(n — k) 6.1)
k=1

In addition, we will use 8;“ to denote the sum of the squares of e;’ (n),

& =Y let @)’ 6.2)
n=0

Equation (6.1) allows us to write the pth-order forward prediction error in the z-domain as
follows

E}2) = Ap(0)X(2) (6.3)
where '
P
A, =1+ a,z™ 6.4)
k=1

Therefore, e;(n) may be generated by filtering x(r) with the FIR filter A,(z) which is
referred to as the forward prediction error filter. This relationship between e, (n) and x ()
is illustrated in Fig. 6.1a.
As we saw in Section 4.4.3, the coefficients of the forward prediction error filter are the
solution to the normal equations
Rya, = e, 1 6.5)

where R,, is a Hermitian Toeplitz matrix of autocorrelations. As we have seen in Chapter 5,

INote that we have added a subscript p to e(z) to indicate the order of the model.

THE FIR LATTICE FILTER 291

e, (n)

_ﬂ. A, ey (n) N x(n) R

AR @)

(a) ()

Figure 6.1 (a) The forward prediction error, e; (n), expressed as the output of the forward
prediction error filter; A,(2) and (b) the backward prediction error, e, (n), expressed as the output
of the backward prediction error filter, A [’f (2).

these equations may be solved recursively using the Levinson-Durbin recursion. Thus, the
coefficients of the (j + 1)st order prediction error filter, ;.. (i), are related to the coefficients
of the jth order prediction error filter through the model-order update equation given in
Eq. (5.16) which is repeated below for convenience,

ajp1() =a;() +Tjpa;(G—i+1) (6.6)

Expressing Eq. (6.6) in the z-domain, we may relate the prediction error filter A;,(z) to
A;(z) as follows

Aj1(@) = Aj(2) + Tj [0V AR(1/2%)] ©6.7)

Multiplying both sides of Eq. (6.7) by X (z) and using Eq. (6.3) we obtain the following
relationship between E;H(z) and E]L (2),

Ef (@ =Ef () +27'TjnE; 2) (6.8)
where we have defined F ' (2) as follows
E; (1) =7/ X () A}(1/2") (6.9)

If, as in Chapter 5, we introduce the notation Af () =z7/ A;‘(l /7%), then E i (z) may be
written as follows

E; @) = A @X(@) (6.10)

Taking the inverse z-transform of both sides of Eq. (6.8), we obtain the time-domain recur-
sion

ef,\(n) =€/ () + Tjef (n— 1) (6.11)

that relates ej?:L1 (n) to e}“(n) and e} (n).
A signal processing interpretation of the signal e (n) may be derived from Eq. (6.9) by
taking the inverse z-transform as follows,

. J
e (n) =x(n— j)+) af()x(n — j + k) (6.12)
k=1

As we did with the forward prediction error, e; (n) may be expressed as the difference
between x(n — j) and what may be considered to be the estimate or prediction of x(n — j)
that is formed by taking a linear combination of the j signal values x(n),x(n — 1), ...,
x(n—j+1),ie.,

e (n) =x(n—j)—x(n—j)

292 LATTICE FILTERS

where
J
En—j)=-) aftx(n—j+k)
k=1

What is interesting about this interpretation is that if we minimize the sum of the squares
of e (n),

&= lemf’
n=0

then we find that the coefficients that minimize £;” are the same as those that minimize Sj+
and therefore are found by solving the normal equations given in Eq. (6.5). Thus, e (n)is
referred to as the jth-order backward prediction error and A f (z) is known as the backward
prediction error filter. The relationship between x (n) and e; (n) is illustrated in Fig. 6.1b.

Equation (6.11) provides a recursion for the (j + 1)st-order forward prediction error
in terms of the jth-order forward and backward prediction errors. A similar recursion may
be derived for the backward prediction error as follows. Taking the complex conjugates of
both sides of Eq. (6.6) and substituting j — i 4 1 for i we have

a}‘+1(j—i+1)=aj’f(j—i+1)+r‘;‘+1aj(i) (6.13)
Expressing Eq. (6.13) in the z-domain we find that
z—(j+l)A;<+l(1/z*) — Z_(j-H)A;(l/Z*) + r;+]Aj(Z) (614)

Multiplying both sides of Eq. (6.14) by X (z) and using the definitions for EJJr (z) and E; (2)
in Egs. (6.3) and (6.9), respectively, yields

E, () =7"Ej @)+ T}, Ef (2) (6.15)

Finally, taking the inverse z-transform we obtain the desired recursion

e (n) =e (n— 1)+ T}, e (n) (6.16)

Equations (6.11) and (6.16) represent a pair of coupled difference equations that correspond
to the two-port network shown in Fig. 6.2a. With a cascade of two-port networks having
reflection coefficients T'j, we have the pth-order FIR lattice filter as shown in Fig. 6.2b.
Note that since

e (n) = e, (n) = x(n) (6.17)

then the two inputs to the first stage of the lattice are the same.
It is interesting to note that with a forward prediction error filter of the form

p

4@ =[](1-wz™) ©6.18)
i=1 ~
the system function of the backward predictidn error filter is
p
AR =zras/) =[]z -) 6.19)

i=1
Therefore, the zeros of A, (z) are at the conjugate reciprocal locations of those of A g (2),1e.,
if thereis a zeroat z = @; in Ap(z) thenthereis azeroatz = 1/« in Aﬁ (z). Consequently,

THE FIR LATTICE FILTER 293

e}-(,,) - > ej++1) e}'(n) E—— | e};, (n)
Tjn
ej_(n) e > e;+1 (n) ej_ n) —»] > ej_H(n)
(a) Single stage of an FIR lattice filter.
eg (n) ef (m) e3 (n) . e;': Q) e (n)
x(n)
—— r r rp
> > —- see > l————
e, (n) e (n) e, (n) e,_(n) e, (n)

(b) A pth-order FIR lattice filter.
Figure 6.2 The FIR lattice filter.

since the forward prediction error filter that is obtained from the autocorrelation method is
minimum phase (assuming R, > 0) then the backward prediction error filter is maximum
phase. Another interesting relationship to note is that since

ES(2) = Ap(2)X(2)

and
E; ()= A} @)X ()
then
E;(2) = Z’E 8 Er (D) =]j [f—__la"—:_—,] E}D) = HpEI@ (620)
where
Pl gt
Hyp(2) =]] 1—_(17 (6.21)

i=1
is an allpass filter. Thus, as illustrated in Fig. 6.3, the backward prediction error may be
generated by filtering the forward prediction error with an allpass filter.? Note that when
A, (z) is minimum phase, all of the poles of the allpass filter are inside the unit circle and
all of the zeros are outside. Therefore, H,,(z) is a stable and causal filter.

There are a number of advantages of a lattice filter over a direct form filter that often make
it a popular structure to use in signal processing applications. The first is the modularity
of the filter. It is this modularity that allows one to increase or decrease the order of a
lattice filter in a linear prediction or all-pole signal modeling application without having
to recompute the reflection coefficients. By contrast, when the prediction error filter is
implemented in direct form and if the filter order is increased or decreased then all of the
filter coefficients, in general, will change. Lattice filters also have the advantage of being
easy to determine whether or not the filter is minimum phase (all of the roots inside the
unit circle). Specifically, the filter will be minimum phase if and only if the reflection

2 An allpass lattice filter for computing ep, (n) from e;“ (n) will be derived in Section 6.4.1.

294 LATTICE FILTERS

+ —
e, (n) Hay () e, (n)

Figure 6.3 Allpass filter for generating the
backward prediction error e, (n) from the for-
ward prediction error e;r (n).

coefficients are bounded by one in magnitude. In the case of IIR lattice filters, which will
be discussed in the following section, this allows one to easily ensure that a filter is stable
by simply imposing the constraint that |I';| < 1. This is particularly useful in an adaptive
filtering environment in which the reflection coefficients are changing as a function of time
(See Chapter 9). This minimum phase condition thus allows one to easily update the filter
coefficients in time in such a way that, for each value of n, the roots of the filter remain inside
the unit circle. Finally, compared to other filter structures, the lattice filter tends to be less
sensitive to parameter quantization effects [13]. Therefore, a lattice filter is frequently used
when it is important to minimize the parameter quantization effects or when a signal is to
be coded in terms of the filter coefficients of the model that provides the best approximation
to the signal. There are other forms of FIR lattice filter, including the one-multiplier and
the normalized lattice filters [7]. In the following section, we derive the split lattice filter.

6.3 SPLIT LATTICE FILTER*

In Section 5.4 of Chapter 5, the singular predictor polynomials were introduced as a way
of imposing symmetry in the prediction error filters A;(z), thereby allowing for an increase
in the efficiency of the Levinson-Durbin recursion. These polynomials were defined to be

Si@ =A@ +77'AR @)
and they were shown to satisfy the 3-term recurrence
Sin@ =1+2785) — 82754

‘We now show how this recurrence leads to a split lattice filter structure [4]. As in Section 5.4
where we derived the split Levinson algorithm, here we restrict ourselves to the case of real
signals.

Paralleling our development of the FIR lattice filter in the previous section, note that if
we were to filter x(n) with S;(z), then the filter’s response

gj(n) = s5;(n) x x(n)

will be the forward prediction error that would result if, at the jth stage of the Levinson-
Durbinrecursion, I'; = 1. Therefore, we will refer to ¢; (n) as the jth-order singular forward
prediction error. Using the 3-term recurrence for S;(z), it follows that ¢;(n) satisfies the
difference equation

gipr(ny=¢;n)+¢e(n—1)—§e1(n—1)

This relationship, shown in block diagram form in Fig. 6.4a, represents one stage of a split
lattice filter. The next stage, which takes the two inputs €;1(n) and ¢;(n — 1) and produces
the outputs £;,5(n) and €4 (n — 1), is defined by the equation

€2(n) = g1 () +gj4(n — 1) — §j165(n — 1)

SPUT LATTICE FILTER* 295

H
&j(n) > > gn—1)
gj—1(n—1) > O—> &j+1(n)
-5
(a) A network corresponding to the 3-term recurrence for the
singular predictor polynomials.
—0j+l1
gi(n—1) > O—> &jv2(n)
&j+1(n) > > gir1n —1)
!

(b) A network that produces ¢;2(n) from ¢;4((n) and ¢;(n—1).

&j(n) > &j+2(n)
gi—1n—1) > giyi(n—1)
(c) A second-order split lattice module that is formed by cascading the net-
works in (a) and (b).
x(n) ! 2 ea(n)
e —1)
&1(n)
o =) 7! &3(n— 1)

(d) A 3rd-order split lattice filter that produces the singular prediction errors e4(n) and e3(n — 1).
Figure 6.4 A split lattice filter.

296 LATTICE FILTERS

and is shown in block diagram form in Fig. 6.4b. Note that this network is the mirror image
of the previous one. Cascading these two sections together produces the second-order split
lattice module shown in Fig. 6.4c. What is needed to complete the split lattice filter is an
initial section to transform x(n) into go(n) and €1(n), and a final section to convert the
singular prediction errors p41(n) and &,(n) into the forward prediction error e; (n). The
initial conditions in the split Levinson recursion are Sy(z) = 2 and Sj(z) = 1+ z7! (see
p- 273), which require that we form the signals

go(n) = 2x(n)
gi(n) =x(m)+x(n—-1)

These signals may be generated as illustrated in Fig. 6.4d which shows a 3rd-order split
lattice filter for producing the singular prediction errors £4(n) and £3(n — 1). Note that a
multiplication may be saved if we combine the factor of 2 with §;.

Finally, to convert the singular prediction errors ,(n) and &, (n) at the output of the
split lattice filter into the forward prediction error e; (n), recall that A,(z) is related to the
singular predictor polynomials as follows

Ap@) =27"Ap@) + Sp11(@) — 27T A +Tp) S, (@)

Therefore, the pth-order forward prediction error may be generated from the singular pre-
diction errors &,(n) and €41 (n) as follows,

ef(n)=€f(n—1) +ep1(n) — (1 +Tp)ep(n — 1) 6.22)

The following example illustrates the procedure.

Example 6.3.1 Split Lattice Filter
Consider the third-order all-pole filter
1

— L1 _ 1,24 2,3
-3z 3377+ 352

H(z) =

In order to implement this filter using a split lattice filter structure, it is necessary that we
derive the coefficients §; from the coefficients a(k). This may be done in a straightforward
manner as follows. First, we convert the coefficients a(k) into reflection coefficients T;.
Using the m-file atog .m we find

T =[-1/4, —1/5, 2/3]"
Second, using the relationship between I'; and §; given in Eq. (5.149), i.e.,
8§ =(0-TH(+Tj.) ; Tu=0
we have

q=1-TI1=5/4
& =1A-T)(A+Ty)=9/10
83 = (1 —=T3)(1 +Ty) =4/15

Finally, with I'; = %, using the termination specified in Eq. (6.22) we have the split lattice
filter shown in Fig. 6.5.

IR LATTICE FILTERS 297

x(n) 7! -5/2 7! ~4/15 y(n)

\
q
4

77! —9/10 77! —-5/3 z7!
Figure 6.5 A third-order split lattice filter.

6.4 IIR LATTICE FILTERS

In Section 6.2 we saw how the reflection coefficients I'; could be used to implement an FIR
filter A,(z) using a lattice filter structure. In this section we develop a lattice filter structure
for IIR filters. We begin with a derivation of the “standard” two-multiplier all-pole lattice
filter for implementing the system function 1/A,(z). At the same time we show how this
all-pole lattice may also be used as an allpass filter H,,(z) = A ,’f (z)/Ap(z). We then look at
some other structures including the Kelly-Lochbaum lattice filter, the normalized all-pole
lattice, and the one-multiplier all-pole lattice. As with the FIR lattice filter, these structures
enjoy the same advantages of modularity, simple tests for stability, and decreased sensitivity
to parameter quantization effects. Finally, we will look at how the all-pole lattice filter may
be modified to implement a general pole-zero filter of the form H (z) = B,(z)/A,(2).

6.4.1 All-pole Filter

A pth-order FIR lattice filter is shown in Fig. 6.2b. The input to the filter is the zeroth-order
forward prediction error e(')+ (n) and the outputs are the pth-order forward and backward
prediction errors, e;,* (n) and e, (n), respectively. The system function of this filter is

E+(Z) p
=L] k)z*
Ay(2) 5D +;ap<)z

The all-pole filter
1 ES(2) _ 1

4,2 Ef @ | +iap(k)z_k
. k=1

on the other hand, would produce a response of e(')+ (n) to the input e;f (n). Therefore, as
illustrated in Fig. 6.6, whereas the FIR lattice filter builds up the prediction errors e,?L (n) and
e (n) from e(')+ (n), the all-pole lattice filter produces the lower order prediction errors, ef (n)
and e (n), from e;(n). Thus, in order to implement a pth-order all-pole lattice filter, we
must determine how the lower-order prediction errors ef (n) and e (n) may be generated

from e;f (n). Note that if we solve Eq. (6.11) for ef (n) we have, along with Eq. (6.16), the
following pair of coupled difference equations

ef(n) = ef,,(n) —Tjpie; (n—1) (6.23)

e1(n) = e (n— 1)+ T, e/ (m) (6.24)

These two equations define the two-port network shown in Fig. 6.7a and represent a sin-

gle stage of an all-pole lattice filter. With a cascade of p such sections we have the pth-order

298 LATTICE FILTERS

eg (n) ern) er(n) 1 el (n)
A p (2) — > >
Ap(2)
(a) A pth-order all-zero filter for generating e;(n) (b) A pth-order all-pole filter for generating e(')" (n)
from eg' (n). from e:,'(n).

Figure 6.6 Generating the pth-order forward prediction error e;f(n) from e (n) and vice versa.

efyy(n) —» o— > e (n) ef, (1) —» —— ()
Tl
. Ty
Ly
e < O~ - j e; (n) €1 (n) —— —— ¢; (1)
z .
(a) Single stage of an all-pole lattice filter.
ey (n) el \(n) el_y(m ef(n) el (n)
—_— > > cee > >
1-‘P Tp I
—_—— > - *0 6 mame—— -
ep, (n) e;_l n) e;_z(n) el’(n) e, (n)

(b) A pth-order all-pole lattice filter and a pth-order allpass filter that is formed by cascading p modules
of the form given in (a).

Figure 6.7 A lattice filter for implementing all-pole and allpass filters.

all-pole filter shown in Fig. 6.7b. Recall that since eaL (n) = ¢y (n) = x(n) then the lattice
filter is terminated by feeding e (n) back into the lower input of the last module. While the
system function relating eaL (n) to e;’ (n) is the all-pole filter

_Ef@ 1
T Ef @) Ap@)

note that, as we saw in Section 6.2, the system function relating e;’ (n) to e, (n) is the allpass
filter :

H(z)

(6.25)

5@ _ A/ ARG
ES(2) Ap(2) Ap(2)

Therefore, this structure may also be used to implement allpass systems.

Hap (z) =

(6.26)

Example 6.4.1 All-pole Lattice Filter
Let us implement the third-order all-pole filter

0.328
—0.8z7!1 +0.64z72 — 0512773

H(z) = 7

IIR LATTICE FILTERS 299

0.328
x(n) — > > > > >y
—-0.3123 0.4878
0.512 Y
0.3123 —0.4878
| ! h Z—‘l
(a) All-pole lattice filter
x(n) ———; »> »
-0.3123
0.3123
y(m) - CF -+ <
! z7!

(b) An allpass lattice filter

Figure 6.8 All-pole and allpass lattice filter implementations.

using a lattice filter structure. With the step-down recursion we find that the reflection
coefficients corresponding to the filter coefficients a, (k) are

I = [—0.4878, 03123, —0.512]"

Thus, the all-pole lattice implementation of H (z) is as illustrated in Fig. 6.8a. This structure
may also be used to implement the allpass filter

—0.512 +0.64z7' —0.8z72 + 773

1—0.8z"!+0.64z72 — 0.512z73

Hap ()=

as illustrated in Fig. 6.8b.

6.4.2 Other All-pole Lattice Structures*

Beginning with the all-pole lattice filter in Fig. 6.7, we may develop some additional all-pole
lattice filter structures. One such structure may be derived from Eqgs. (6.23) and (6.24) as

follows. Note that Eq. (6.23) expresses the forward prediction error e;'(n) in terms of the
two lattice filter inputs e;'H (n) and e (n — 1) whereas Eq. (6.24) expresses the backward
prediction error e/, ; (n) in terms of the output 'ef(n) and the input ¢ (n — 1). However, we
may also express ¢, (n) in terms of the two inputs e;_l (n) and ¢; (n — 1) by substituting

Eq. (6.23) for ¢} (n) into Eq. (6.24) as follows
e, (n) = e (n—1)+ e (n)
=e(n—1)+T7,, [ej+l(n) o 1)]
= [1 - |l"j+1|2]ej_(n —)+ Theh () (6.27)

Equation (6.27) along with (6.23) define the two-port network shown in Fig. 6.9. Note that,
unlike the all-pole lattice in Fig. 6.7, this implementation requires three multiplies per stage.

300 LATTICE FILTERS

Although not a particularly useful structure, through a sequence of flowgraph manipulations
described below we may derive some interesting and important all-pole lattice structures.
The first is the Kelly-Lochbaum model that has been used in speech modeling as well as
models for the propagation of waves through a layered media [11,12]. Next, we derive the
normalized all-pole lattice filter which, although requiring four multiplications per section,
has an advantage in terms of computational accuracy using fixed-point arithmetic [10].
Finally, we derive the one-multiplier lattice which is the most efficient structure when
measured in terms of the number of multiplications per section.

Beginning with the three-multiplier lattice module in Fig. 6.9, suppose we scale the
input to the upper branch by a constant 1/c;,| and scale the outputs of the branch point by
the inverse of this scale factor, a; . This produces the equivalent two-port network shown
in Fig. 6.10a. Next, if we divide the two inputs to the adder in the lower branch by o4
and multiply the output of the adder by «;,, then we have the equivalent network shown

in Fig. 6.10b. Now, recall that both of the outputs e}L (n) and €y (n) are formed by taking

a linear combination of the two inputs e;.LH (n) and e (n). Therefore, if we scale the two
inputs by «;,, and rescale the outputs by 1/c;; then the network will remain the same.
The net effect, as shown in Fig. 6.10c, is to bring the two scale factors on the left of the
two-port network over to the right side. Forming a cascade of these modules, moving all
of the scale factors to the end of the network, results in the equivalent all-pole lattice filter
shown in Fig. 6.10d where

p
a=]Te
j=l

Since eg (n) = e (n) then the network may be terminated by feeding the output of the final
stage of the lattice back into the input. With the scale factors of & and 1/« canceling each
other at the input to the last module, we are then left with only a scale factor of 1/« at the
output that is applied to ey (n). This leads to the structure shown in Fig. 6.11 consisting
of a cascade of modified all-pole lattice modules. Having dropped the final scale factor
1/a from the network, the system function between the input x(n) and the output y(n)
is

H(z) = ;—8 = I—E:('sj 6.28)
and the system function relating x (n) to w(n) is the allpass filter
H(z) = V;((;) = i‘:’j ((3 6.29)
e]?LH(n) > > O > e]?L(n)
i —Tin
e ()) T “fj+l|2 zi' @

Figure 6.9 A three multiplier all-pole lattice filter module.

IIR LATTICE FILTERS 301

1/atji1 ot
+ > . o > +
e/ 1(n) > > > e (n)
%
o1l —Lj+1
€i11(n) < O n— - e; (n)
1 =Tl z
(a) Scaling the input in the upper branch of the all-pole lattice module
by 1/ and rescaling the outputs of the first branch point by a1 .
1/atjyy j+1
+ > > O >
€11 (n) > > > ej+ (n)
%
I =L+
€ (n) O + e; (n)
ajpr (=Tl /a1 2z
(b) Scaling the inputs to the adder in the lower branch by 1/¢;, | and
rescaling the output by ;1.
®jt1 1/ajq1
+ > - >
el (n) > > oO—— e (n)
*
It =Ljt1
ej+1(n) < O <+ 5 < — ej_(n)
1- |Fj+1|)/Olj+1 aj412
(c) Moving the scale factors oz; 41 and 1/a;41 on the left to the right.
+ + + + l +(n)
e, (n) ep_l(n) ep_z(n) e (n) ae" n
—_— > > ‘e > | ¢,
Fp Fp_1 r
op Op—1 [¢3]
—— < - s < -
e, (n) e;_l(n) e;_2(n) e (n) ae, (n)

(d) A cascade of lattice filter modules of the form given in (c) with all of the scale factors moved to
the final stage.

Figure 6.10 A sequence of lattice filter flowgraph manipulations that lead to equivalent all-pole
lattice filter structures.

302 LATTICE FILTERS

Qi1
+ . . . +
e, 1(n) > > O > e/ (n)
*
L =L
e, (n) - O < < e; (n)
J+l 2 1 i
A= 1Tl9 /e z

(a) The modified all-pole lattice module.

x(n) y(n)

y
Y
Y

ap ap_1 o)

(b) A cascade of modified all-pole lattice modules.

Figure 6.11 A modified all-pole lattice filter built-up as a cascade of modified all-pole lattice
modules shown in (a).

Given the all-pole module in Fig. 6.11, we may now derive three important all-pole
lattice filter structures. In each case, we assume that the reflection coefficients are real-
valued. The first is based on the factorization (1 — l"}_H) = (1 +Tj41)(A —T4) and is
obtained by setting ‘

Uiy = 1+ Fj_,,] (6.30)

This results in the lattice filter module shown in Fig. 6.12a which is known as the Kelly-
Lochbaum model. This structure has been used as a model for speech production in which
the vocal tract is approximated as an interconnection of cylindrical acoustic tubes of equal
length and differing cross-sectional areas where the reflection coefficients I'; correspond to
the amount of acoustic energy that is reflected at the interface between two adjacent tubes
having a differing acoustic impedance [3,6]. The difference equations for this structure are

ef(n) = [1+Tlel (n) — Tjie; (n = 1)
e = [1-Tinlef (0 — 1) + el (n) (6.31)
and the system function is
[17,(1+Tp)
Ap(2)

This structure requires four multiplications, two additions, and one delay for each stage.
The next all-pole lattice structure is derived by introducing a new set of variables, 8;41,
where ;1 is related to the reflection coefficients I';,1 as follows

H(z) = (6.32)

0j41 = sin"! [y (6.33)

IR LATTICE FILTERS 303
1+ Ty
el (n) > > > el (n)
Fjn =L
e,'-+1 n) < O < - e n)
1 —Tjq b4
(a) Kelly-Lochbaum lattice filter.
cos 4
efy(n) > > > el (n)
sin 64 —sinfj4
ej-+|(n) < L < :l ej-(n)
cos 6,4 b4
(b) Normalized lattice filter.
ef, () > et n)
e;(n) « - e; (n)

(¢) One-multiplier lattice filter.

Figure 6.12 Three all-pole lattice filter structures with real-valued fil-
ter coefficients. Each of these lattice modules is equivalent to within a
scale factor. '

Assuming that the filter is stable so that [[";4;| < 1, this transformation is well-defined.

With

and

I“,-H = sin 9j+1

| I“f_H = cos’ 0+

let us define the scale factor @1 by

Qj4y = €08 04y

(6.34)

(6.35)

(6.36)

304 LATTICE FILTERS

This leads to the normalized all-pole lattice filter shown in Fig. 6.12b. The difference
equations for this network are

e;'(n) = [cos 0j+|]ej++,(n) — [sin 0j+|]ej_(n -1
ej_+,(n) = [cos 0,-+|]ej_(n -+ [sin 0j+|]e;'+,(n) (6.37)
and the system function is

14
cos 0
1

j=

H(z) yWe) (6.38)
In this implementation, there are four multiplications, two additions, and one delay for each
stage as in the Kelly-Lochbaum structure. However, what makes this structure interesting is
the fact that it requires only one complex multiplication. Specifically, note that if we form
the complex signal e}, | (n) + je; (n — 1) from the two input signals, and the complex signal
ef(n)+j e, (n) from the two output signals, then these two signals are related as follows?

er(n) + jej, (n) = e/%+ [e,.*_;,(n) + je; (n— 1)] (6.39)

In particular, note that Eq. (6.37) corresponds to the real and imaginary parts of both sides of
this equation. This relationship also demonstrates that the complex signals are normalized
in the sense that their magnitudes do not change from one section to the next,

lef (n) + jer ()| = |ef, (n) + jer (n—1)] (6.40)

Thus, this structure is referred to as the normalized lattice. One of the advantages of the
normalized lattice filter is its robustness to round-off errors when using fixed-point arith-
metic [10].

The last structure is the one-multiplier lattice which, as its name implies, requires only
one real multiplication per module [5]. This structure may be derived by re-writing the
Kelly-Lochbaum equations as follows,

ej?L(n) = l",-+1[ef+1(n) —e; (n— D]+ ejtrl(n) 6.41)

€1 (n) =Tinlef, () —e; (n— D]+ e (n—1) (6.42)

Since the reflection coefficient I'; 1, multiplies the same signal in both equations, forming
the sum e;;_, (n) —e; (n—1) prior to multiplying by T'; 4 leads to a structure requiring only

one multiplication per stage. The one-multiplier lattice structure is shown in Fig. 6.12¢. In
addition to one multiply, this structure requires three additions and one delay.

6.4.3 Lattice Filters having Poles and Zeros

In the previous section, several different all-pole lattice structures were derived from the
basic all-pole lattice given in Fig. 6.7. From this structure we may also develop a lattice
filter that realizes a general rational system function of the form

_ By(@) _ by(0) + by (D2 + -+ by(q)zT

HO =0 = T Tra T+ T apy(p)er

(6.43)

*Note that we have changed the subscript indices on the forward and backward prediction errors from j to i in
order to avoid confusion with the imaginary number j = +/—1.

IR LATTICE FILTERS 305

e; (n) gt a2 i % ()
r, | Iy
e, (n) e;_(n) o2 (1) ey (n) e ()

Cp(p)v Cp(P -])‘ Cp(P 2) l p(l) cp(o)
»> O——P= 000 oyl »>- O— - y(n)

O

Figure 6.13 A lattice filter havmg p poles and p zeros.

where ¢ < p. To see how this may be done, note that H(z) may be implemented as a
cascade of an all-pole filter 1/A,(z) with an all-zero filter B,(z). The pair of difference
equations corresponding to this cascade are

p .
wn) = x(n) — Za,,(k)w(n —k)
k=1

where w(n) is the output of the all-pole filter 1/A,(z) and

q
y(r) = by(kyw(n — k)
k=0

is the output of the FIR filter B,(z). Since the zeros of H(z) are introduced by taking a
linear combination of delayed outputs of the all-pole filter, with the all-pole lattice filter in
Fig. 6.7, a rational system function may similarly be realized with a linear combination of
the signals ef (n — k) fork =0, 1, ..., g. However, a more efficient way is to take a linear
combination of the backward prediction errors e (n)

q
y() = cg(ief (n) (6.44)
j=0

as shown in Fig. 6.13 (in this figure we assume that ¢ = p). To show that this filter does,
in fact, have a rational system function, we begin by expressing Eq. (6.44) in the z-domain
as follows

q
Y(@) =) c(HE} (2) (6.45)
j=0
With
Af(2)
E; (2) = AR Ef(2) = -L—EF
(@) =A7 (QE;(2) A, ()
it follows that
Y +
@) = Zcq - () EX(2)
Therefore, the system function relatmg the input E;L (z) to the output Y (2) is
q
Y e(DAFR)
i=0
Hz) =" (6.46)
Ap(2)

which has p poles and g zeros. Note that the zeros of H(z) are the roots of the polynomial

306 LATTICE FILTERS

9
B,(2) =) c,(DAf (@) (6.47)
j=0

which is a function of not only the tap weights ¢, (j) but also the reflection coefficients I';.
To see how the coefficients b, (j) are related to the coefficients ¢, (j), we substitute the
following expression for Af(z),

J
AR@ =T AT(12y =) atm)z"
=0

into Eq. (6.47) as follows
q J
B,(2) =) cg(j) D aj(m)z"™) (6.48)
i=0 =0

With the substitution k¥ = j — m, Eq. (6.48) becomes

J

9
B,(2) =) coaj(j—kz™*

7=0 k=0

Interchanging the order of the summations and making the appropriate changes in the
indexing we have

k=0

q9 q q9
B,(2)=)_ [cq(Na(j — k)] z7F =) by k)™ (6.49)
k k=0

Finally, equating powers of z on both sides of Eq. (6.50) gives the desired expression

9
ba(k) =" cq(j)aj(j — k) (6.50)
j=k

This equation shows how the coefficients b, (k) may be found from the coefficients ¢, (k)
and T;. Specifically, from the reflection coefficients I'; of the all-pole filter we may use
the step-up recursion to find the all-pole coefficients for model orders j = 0, 1,...,4.
With g; (k) along with the coefficients ¢, (k), Eq. (6.50) may then be used to determine the
coefficients b, (k). Equation (6.50) may also be used to find the coefficients c, (k) required
to implement a given rational system function with a numerator By (z). To do this, Eq. (6.50)
is rewritten as follows
g
by (k) = cgk)+ Y cq(a(j = k) (6.51)
j=k+1

(here we have used the fact that a; (0) = 1). Thus, the cocefficients ¢, (k) may be computed
recursively as follows

9
cqk) =bg(k) — D~ ¢q(aj(j —k) (6.52)

Jj=k+1

fork =q —1,q —2,...,0. This recursion is initialized by setting
Cq (9) = bq (q) (6.53)

The following example illustrates the procedure.

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 307

x{n)

0.0775 —0.6584 —0.0302

-0.0775 0.6584 0.0302

0.2759 0.5124 0.3058 —0.0493 Y
y(n)

2% > O - 254

Figure 6.14 Lattice filter realization of a 4th-order low-pass elliptic filter.

Example 6.4.2 Lattice Filter Implementation of a Low-Pass Elliptic Filter

A third-order low-pass elliptic filter with a cutoff frequency of w = 0.57 has a system
function given by ‘

0.2759 +0.5121z~! 4+ 0.5121z2 + 0.2759z 3
1 —0.0010z~! + 0.6546z-2 — 0.0775z73

To implement this filter using a lattice filter structure, we first transform the denominator
coefficients into reflection coefficients. Using the step-down recursion we find

T = [0.0302, 0.6584, —0.0775]"

with the second-order coefficients given by

H(z) =

a; = [1, 0.0501, 0.6584]"
and the first-order coefficients equal to
a; = [1, 0.0302]"

Next, we find the coefficients c3(k) that correspond to the given numerator using the recur-
sion in Eq.(6.52). Beginning with

c3(3) = b3(3) = 0.2759
we then find
c3(2) = b3(2) — c3(3)az(1) = 0.5124
c3(1) = by(1) — c3(Dax(1) — c3(3)as(2) = 0.3058
c3(0) = b3(0) — ca(Dai(1) — 3(2)a2(2) — ¢3(3)as(3) = —0.0493
This leads to the lattice filter implementation illustrated in Fig. 6.14.

6.5 LATTICE METHODS FOR ALL-POLE SIGNAL MODELING

In Chapter 4 we developed several different approaches for finding an all-pole model for a
signal x (n). In each case, we first defined an error that was to be minimized and then solved
the minimization problem for the optimum set of transversal filter coefficients a, (k). Since
the lattice filter provides an alternate parameterization of the all-pole filter, i.e., in terms of
its reflection coefficients, we may also consider formulating the all-pole signal modeling

308 LATTICE FILTERS

problem as one of finding the reflection coefficients that minimize some error. In this section
we look at several such lattice methods for signal modeling including the forward covariance
method, the backward covariance method, Burg’s method, and the modified covariance
method. Except for the modified covariance method, each of these methods is a sequential
optimization procedure. That is to say, given an error that is to be minimized, such as the
sum of the squares of the forward prediction error, the first reflection coefficient, 'y, is found
that minimizes this error. Then, with I'; fixed, the optimum value of I'; is determined. Thus,
in general, with "y, . .., I';_; held constant, the value of I'; is found that minimizes some
error. We begin, in the following section, with the forward covariance method.

6.5.1 The Forward Covariance Method

Let x(n) forn = 0, 1,..., N be a signal, either real or complex, that is to be modeled
as the unit sample response of an all-pole filter of order p. For an all-pole lattice filter,
it is necessary to determine the reflection coefficients which, for reasons soon to become
apparent, we will denote by I“j+. In the forward covariance method the reflection coefficients
are computed sequentially with the jthreflection coefficient, I}, determined by minimizing
the covariance-type error

N
& =Y lefm[’ (6.54)
n=j
Note that since £ j+ is a function only of the signal values x(n) over the interval [0, N], as
with the covariance method described in Section 4.6.2, it is not necessary to window the
signal or make any assumptions about the values of x(n) outside the given interval.
To begin the sequential minimization of £ j+ using the forward covariance method, we
must first find the refiection coefficient I'}” that minimizes the first-order error

N
& =" let)|’ (6.55)
n=1

This minimization may be performed by setting the derivative of £;” with respect to (I"})*
equal to zero as follows

3 + - + 3 +y* —
a(rr)*gl = n;el (.")a(rr)* [ex] =0 (6.56)
Since
e1+(n) = eg(n) + F1+e6 (n—1) 6.57)
then
d [ef(n)]* - .
)

and Eq. (6.56) becomes

N

D et eg(n—D] =0 (6.58)

n=1

LATTICE METHODS FOR AlL-POLE SIGNAL MODELING 309

Note that if we consider eT(n) and ey (n — 1) forn = 1,2,..., N to be N-dimensional
vectors,

ef = [ef(D), 5 @), -, ef V)]
g = [e5(0), e (1), -+, ¢g(N - D]" (6.59)
then Eq. (6.58) states that 5,+ will be minimized when eT and e, are orthogonal,
(ef, eg) =0

Substituting Eq. (6.57) into Eq. (6.58) and solving for I'; leads to the following expression
for I},

N
Ze (n) ey (n — l)]
ri=- 2= (6.60)

N 2
> leg =1
n=1

which, in terms of the vectors ef and e;, may be expressed as

+ (eg, €5)
MM =—-——
leg |
Continuing with this process, sequentially minimizing 5;' while holding I'f, ..., I‘;’_l

fixed, the value of I‘;’ is found by setting the derivative of 5;' with respect to (I‘;’)* equal
to zero,

3 + - et +m 1 =
a(rf)*zj _; (n)a(r+)*[j(n)] =0 (6.61)

Using the forward prediction error update equation
e;'(n) = ;'_l(n) + F;'ej__l(n -1 (6.62)

it follows that the partial derivative of [e;'(n)]* with respect to ([)* is [¢_,(n — D]
Therefore, Eq. (6.61) becomes

N
Ze;f(n)[ej—_l(n -D]"=0 (6.63)
n=} .
Equation (6.63) states that the vectors e;' and ej__1 are orthogonal,
(e, e_;)=0 (6.64)
where
. . T
e =[ef (), G+, ..., ()]
e, =[G =1, eL()enn e, (W —D]" (6.65)

are vectors of length N — j + 1. Substituting Eq. (6.62) for e;' (n) into Eq. (6.63) and solving
for I} we find that the jth reflection coefficient is

310 LATTICE FILTERS

The Forward Covariance Method

function [gamma,err] = fcov(ix,p)

%

X = x(:);

N=length(x) ;

eplus = x(2:N);

eminus = x(1:N-1);

N=N-1;

for j=1:p;
gamma(j) = -eminus’*eplus/(eminus’ *eminus) ;
templ = eplus + gamma(j)*eminus;
temp2 = eminus + conj(gamma (j)) *eplus;
err(j) = templ’*templ;
eplus = templ{(2:N);
eminus = temp2(l:N-1);
N=N-1;
end;

Figure 6.15 A MATLAB program for finding the reflection coefficients for a pth-order all-pole
model of a signal x(n) using the forward covariance method.

N
(m[ej_(n =1
g -1 -1] __(efl,ej_l)

! le;_ 112

Z| _i(n—

(6.66)

From a computational point of view, the forward covariance algorithm works as follows.
Given the first j — 1 reflection coefﬁcients I‘+ ={rf, ry, .. I‘+]T and given the
forward and backward prediction errors e 1(n) and e;_ i1 (n), the jth I'CﬂCCthl’l coefficient
is found by evaluating Eq. (6.66). Then, usmg the lattice filter, the (j — 1)st-order forward
and backward prediction errors are updated to form the jth-order errors ej‘f (n) and e; (n)
and the process is repeated. A MATLAB program for finding a pth-order all-pole model for
a complex signal x(n) using the forward covariance method is given in Fig. 6.15.

Example 6.5.1 Forward Covariance Method

Given the signal x(n) = B"u(n) forn =0, ..., N, let us find the pth-order all-pole model
for x(n) using the forward covariance method. We begin by initializing the forward and
backward prediction errors as follows

eJ(n):eJ(n):x(n):ﬂ" ; n=0,1,...,N
Next, we evaluate the norm of e, (n — 1),
N N-1 1 _ﬁZN

legP =) gD =Y " = =g

n=1 n=0

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 311

and the inner product between e+(n) and ey (n — 1),

l_ﬂZN
-p

(eg, eo)—Ze{{(n)eo(n—l)—ﬂZﬂz”—ﬂ

Then, using Eq. (6.60), we find for the first reflection coefficient,

+ oo
t= _l&, &) ’_eo) =-8

leg 12

Updating the forward prediction error using Eq. (6.62) we have
ef (n) =ef(m) +T{eg(n—1) = B"uln) — B(B)" 'u(n — 1) = (n)

Therefore, the first-order modeling error is zero

Z O

The first-order backward prediction error, on the other hand, is not equal to zero. In fact,
using Eq. (6.16) we see that

ef(n)=eg(n—1)+T el (n)=p"un -1 — g un)
For the second reflection coefficient, since e (n) = 0 for n > 0 then
s _lel, e _
: ey 12

With the second reflection coefficient equal to zero it follows that e Fn) = e tn) =8n)
and that I'; = 0. Continuing, we see that I’} = 0 for all j > 1,

rt=[-400..]

Lest we be misled by the results of the first example, as another example let us consider
the signal x(n) shown in Fig. 6.16a which is the unit sample response of the third-order
filter

1 1
A3(z) 1—0.12z7! —0.456z2 + 0.6z3
The lattice filter coefficients for this filter are
=[0.6, —0.6, 0.6]"

Using the MATLAB program for the forward covariance method given in Fig. 6.15 with
p = 3 and N = 60 we find that the reflection coefficients are

H(z) =

I+ = [0.5836, —0.4962, 0.5603]"

and the sequence of squared errors is

£+ =[1.4179, 0.4128, 0.0117]"

The system function corresponding to these reflection coefficients is

1

Ay@) = —— =
3(2) Asz) 1400160z~ " —0.3315z-2 + 0.5603z 3

312 LATTICE FILTERS

e

05

AAEEEREE

paR A0 25 38 2 3K X)

?T11te
’ [lll—[lllTlllTlllTlllﬂ.&&&&css
-0.5F)l
o 10 20 30 prS = -
(a) A third-order all-pole signal that is to modeled.
0.02 : . . ‘ ‘

0.01F

0 h ”TT” TTT 11111t ereeese
I “—Illl—flllTllHHHuu

-0.011 e .

. 1 A _ ! L

0'020 10 20 30 40 50 60
(b) The forward covariance error, e;' (n), using a model order of p = 5.

01 T T T T T

N AR A A RARARAR AR AARARAR
[T

(c) The model error, e(n) = x(n) —’x\(n).

Figure 6.16 Using the forward covariance method to model a signal that is the
unit sample response of a third-order all-pole filter.

Note that although x () is the unit sample response of an all-pole filter, the forward covari-
ance method is unable to correctly model x (). If we increase the model order to p = 5,
the next two reflection coefficients are

Iy =00483 ; T =0.1067
and the corresponding modeling errors are
EF=00087 ; &F =0.0016

Thus, extra poles may be used to further decrease the forward prediction error. Shown in
Fig. 6.16b is the forward covariance error es+ (n) over the interval [5, N1, the interval over

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 313

which e;'(n) is minimized. Finally, in Fig. 6.16c is the error, e(n) = x(n) — £(n). If we
compute the squared model error we find

N
Es =) [x(n) — 2(m)]” = 0.0889

n=5

The fact that £, s and £ are different should not be surprising since they are defined differ-
ently. It is important to keep in mind that in the forward covariance method 6;," is the sum
of the squares of the forward prediction error,

el (n) = a;(n) * x(n)
whereas £/ s is the sum of the squares of the modeling error
e(n) = x(n) — x(n)

Finally, note that since x(n) is the output of a third-order all-pole filter, if we were to use
the covariance method then x (n) would be modeled exactly and the third-order modeling
error £ would be zero.

As illustrated in the previous example, the model that is produced with the forward
covariance method is, in general, different from that obtained using the covariance method.
Therefore, it is not necessarily true that the forward covariance method will produce an
exact model for a signal x (n), even if it is the output of an all-pole filter. In addition, as we
observed when modeling the signal x(n) = 8", the forward covariance method does not
guarantee a stable model.

6.5.2 The Backward Covariance Method

As we saw in the previous section, using the forward covariance method the reflection co-
efficients of the lattice filter are found by sequentially minimizing the sum of the squares
of the forward prediction error. Since a lattice filter generates both forward and backward
prediction errors, we may just as easily minimize the sum of the squares of the backward
prediction error. These two approaches are not entirely independent of each other, how-
ever, since minimizing the backward prediction error is the same as time reversing x(n)
and minimizing the forward prediction error. One may argue, in fact, that since x(n) and
x*(N — n) are statistically equivalent in the sense that they have identical deterministic au-
tocorrelation sequences, there is no inherent reason why one error should be preferred over
the other. Therefore, in this section we will look at the backward covariance method which
performs a sequential minimization of the sum of the squares of the backward prediction
error,

N
&= lem| (6.67)
n=j

In order to distinguish this solution from that obtained using the forward covariance algo-
rithm, we will denote the reflection coefficients in the backward covariance method by I” K

Proceeding as we did for the forward covariance method, setting the derivative of £ "~ with
respect to (I“j_)* equal to zero, we find that the reflection coefficient ry that minimizes the
backward prediction error £; is given by :

314 LATTICE FILTERS

N
> e e (n— D]
I‘._=—n=j : =_(e 1»11)
! al lej_, I?

Y leimf’
n=j

From a computational point of view, the backward covariance method works in the same
way as the forward covariance method. Given the first j — 1 reflection coefficients, I' ~ =
[ry. 5.,T j'_,]T, and given the forward and backward prediction errors ¢;”, (n) and
e;_y(n), the jth reflection coefficient that minimizes £; is computed using Eq. (6.68).
Then, using the lattice filter the (j — 1)st-order forward and backward prediction errors are
updated to form the jth-order errors e+ (n)ande; (n) and the process is repeated. A MATLAB
program for the backward covarlance method i 1s easily derived by modifying £cov.m in
Fig. 6.15. Changes are required only in the lines that compute the reflection coefficient I';”
and the error £

(6.68)

Example 6.5.2 Backward Covariance Method

Let us look again at the modeling problem considered in Example 6.5.1, this time
using the backward covariance method. As before, we begin by initializing the forward and
backward errors

eJ(n):e&(n):ﬁ”u(n) i n=0,1,...,N
Evaluating the norm

2_y w_ g2l = B
leg1? =Y [ef @] Zﬁ"= T—F

n=1

and the inner product
_ ﬂ2N
(€, €)= Zeg(n)eo (n—1)= ﬁ =5

we find that the first reflection coefficient is

_ 1
ri=——

Updating the backward prediction error
1 1
ef(n) =eg(n—1) +TTeg(n)=p""u(r 1) - gFrun) = —28(n)

it follows that the first-order modeling error is zero

N

& =2 [erw]' =0

n=1

The first-order forward prediction error, however, is nonzero

et(n)=ef(n) + ey (n—1) =B u(n)— B~ " lu(n - 1)

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 315

Nevertheless, since e (n) = 0 for n > 0 then (e;, eT) = 0 and the second reflection
coefficient is equal to zero, I'; = 0. In fact, as with the forward covariance method, all
succeeding reflection coefficients will also be equal to zero,

r-=[-1800,..]

As another example, let us again consider the signal x(n) from Example 6.5.1 that is
the unit sample response of the third-order filter
1
1—0.12z7! — 0.456z2 + 0.6z~3
which has lattice filter coefficients

I =[0.6, —0.6, 0.6]

Using the backward covariance method with p = 3 and N = 60, the reflection coefficient
sequence is :

H(z) =

I~ =[0.8011, —1.1787, 0.6796]"
which corresponds to a filter having a system function

1
1 —0.9441z~! — 1.2760z72 + 0.6796z~3
Furthermore, the sequence of squared errors is

£ =[3.6556, 1.9460, 0.9147]"

As(z) =

Note that, unlike the solution to the forward covariance method, the model is unstable. If
we increase the model order to p = 5, the next two reflection coefficients are

ry =-1.125 ; Iy =-04135
and the corresponding errors are

£ =05189 ; £ =0.1100

As illustrated in the previous example, the reflection coefficients in the backward co-
variance method are, in general, different from those obtained using the forward covariance
method. As with the forward covariance method, it is not necessarily true that the backward
covariance method will produce an exact model for a signal x (r), even if it is the unit sample
response of an all-pole filter. In addition, the backward covariance method may lead to an
unstable model.

6.5.3 Variations

One of the properties that we have discovered about the forward and the backward covariance
methods is that the reflection coefficients are not guaranteed to be less than one in magnitude.
As a result, it is possible for either of these methods to produce an unstable model. Since
ensuring a stable model may be necessary in applications such as speech synthesis or signal
extrapolation, there is an interest in modeling techniques that are guaranteed to produce a
stable model. There are several ways that we may combine the models generated by the

316 LATTICE FILTERS

forward and backward covariance methods to produce a stable model. One such approach

proposed by Itakura [5] is to model a signal using reflection coefficients that are given
by

N
+ = -n
;e/—l(")[";—l(") € e)

-1 i
r=- =~ =
! le_ 1 llej_,l

Al 2 X 2
3 e 3 - D)
n=j n=j

If we compare " ,l with the reflection coefficients used in the forward and backward covari-
ance methods, we see that [T’ j’ | is the geometric mean of |1"j+| and |1"j_ [

IENIVIIT (6.70)

We may show that [I” /l | < 1by applying the Cauchy-Schwartz inequality to the vectors €;_,
and ej+_l as follows,

(6.69)

ey, el < lekl eyl ©.71)

where equality holds if and only if ej+_1 = o e;_, for some constant &. Therefore, it follows
that |T'/| < 1.

There are other ways to ensure that the reflection coefficients are bounded by one in
magnitude [8]. For example, it follows from the properties of the geometric mean that

min{|T}|, [T} < |T/| < max{[T}|, T/}

Since |1"f | <1, it follows that if |Fj+| is greater than one in magnitude then T/’ will be
less than one in magnitude, and vice versa. Therefore, if we set

IT) = min{ 1, 1171}

then |T™"| is guaranteed to be bounded by one in magnitude.

Although both the geometric mean and the minimum method produce reflection coef-
ficients that are bounded by one in magnitude and thus represent a stable model, neither
approach corresponds to a solution that results from the minimization of an error. In the next
section we look at Burg’s method which uses a sequential approach to find the reflection
coefficients and does so in a way that guarantees that the reflection coefficients are bounded
by one in magnitude and, therefore, guarantees that the model is stable.

6.5.4 Burg’s Method

In Chapter 4 we saw that the covariance method for all-pole signal modeling, while more
accurate than the autocorrelation method since it does not apply a window to the data, has
the property that it does not always lead to a stable model. In addition, as we have seen
in the previous two sections, sequentially minimizing either the forward or the backward
prediction error using a “covariance-like” error may also lead to an unstable model. In the
1960s, Burg developed a method for spectrum estimation known as the maximum entropy
method [1]. As a part of this method, which involves finding an all-pole model for the data,
he proposed that the reflection coefficients be computed sequentially by minimizing the
sum of the forward and backward prediction errors (2],

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 317

N N
EE=crv& = Z leF () + Z le; (n)? (6.72)
n=j} n=

This blending of the forward and backward prediction errors places an equal emphasis on
Sj+ and £, and minimizing this error may be justified based on the statistical equivalence of
x(n) and x*(N —n) as pointed out in Section 6.5.2. As we will soon see, what makes the Burg
error interesting and attractive is the fact that sequentially minimizing SjB guarantees that the
reflection coefficients will be bounded by one in magnitude and thus, the model will be stable.
As we have done many times before, we may find the value of the reflection coefficient,
I/, that minimizes £? by setting the derivative of £ with respect to (I'?)* equal to zero

as follows
0 s i

+ (1012 - 2
3(r%) j ﬁg)—*;{le‘j WI* + le; (n) }

N .
Z{ej(n)[ej__l(n - 1)]* + [ej_ (n)]*ef_l(n)l =0 (6.73)
n=j
Substituting the error update equations for e+ (n) and [e'(n)]* which are similar to those
given for e y(n) and e) (n) in Eqs (6.11) and (6.16), and solving for FB we find that the
value of I“JB that minimizes £ B j

22 L m)[e_ (n = D] et e
1° j 1

ré—=_— == (6.74)
’ IIe 2+ lley 12

Z[| L+l (n = DI}

To show that IFJB | < 1 we use the inequality given in Eq. (2.26) on p. 24 which states that,
for any two vectors a and b,

2|(a.b)| < lal® + ||lb||2 (6.75)
with equality holding if and only if a = +b. With a = e_jand b = e _, it follows
immediately that |F}3 | < 1 with equality if and only if ej_l(n) =e;_(n— 1)

In the process of deriving the Levinson-Durbin recursion we saw that the modeling

errors €; and ;. for the autocorrelation method are related by

€ =¢[1 -1 (6.76)
A similar relationship exists between the Burg errors & B and & B |. This relationship may

be derived by 1ncorporat1ng the lattice filter update equatlons 1nto the Burg error given in
Eq. (6.72) and simplifying.* Specifically, we have

N
£’ Z[|e;“<n)|2+|e;<n>|2}

Z|)+ TP (n— D) +Z|ej (= 1)+ (CEyer (m)] (6.77)
n=j

4 Although not difficult, this derivation is a bit messy due to the plethora of complex conjugates and inner products.

318 LATTICE FILTERS

Expanding the squares and combining together common terms we may write Eq. (6.77) as
follows

e = [141r2P] S let e =)
n=j

N N
+ 208) el e (n = D]+ 207 Y e (n - D[ef_ (m]" (6.78)
n=j j

h=j

Now, note from Eq. (6.74) that the inner product between e;“_l (n) and ej—_l (n — 1) may be
written as

N N
2Zef_l(n)[ej—_l(n -D]" = —l"f Z[|ef_l(n)|2 + |ej—_l(n - 1)|2]
n=1

n=j

Substituting this expression and its conjugate into Eq. (6.78) and simplifying we have
N
2 - 2
e =[1-r2F] 2 {leimf + e = DI (6.79)
n=j

Finally, since

al 2 2
> {leiml* + e = DI
n=_]

il 2 2
> {lefimf + ez}
i—1

n=j-—
—lef1G = DI = ez |*
= &2, — et (G = D* = e | (6.80)

we have the following recursion for the Burg error

e ={er -l G = D =l P [1=10fF] | s

which is initialized with
N N
& =Z[|e§(n)|2+ |e5(n)|2] =22|x(n)|2 (6.82)
n=0 n=0

From a computational point of view, Burg’s method works in the same way as both the
forward and the backward covariance methods. Specifically, given the first j — 1 reflection

coefficients, T' ;’_l = [T, ..., l"f_l]T, and given the forward and backward prediction
errors e;“_l(n) and ej__l(n), the jth reflection coefficient is computed using Eq. (6.74).
Then, using the lattice filter, the (j — 1)st-order forward and backward prediction errors are
updated to form the jth-order errors ef (n) and e; (n). A MATLAB program that implements
Burg’s method, sometimes referred to as the Burg recursion, is given in Fig. 6.17.

The primary computational requirements in the Burg recursion come from the evaluation
of the inner product and the norms in Eq. (6.74) that are necessary to evaluate 1"15. It is
possible, however, to derive a recursion for updating the denominator of Eq. (6.74), thereby
reducing the amount of computation. This recursion may be derived by noting that the
denominator, which we will denote by D;, is equal to the term on the left hand side of

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 319

The Burg Algorithm
function [gamma,err] = burg(x,p)
%
x=x(:);
N=length(x) ;
eplus = x(2:N);
eminus = x(1:N-1);
N=N-1;
for j=1:p;
gamma(j) = -2*eminus’*eplus/(eplus’*eplus+eminus’*eminus);
templ = eplus + gamma(j)*eminus;
temp2 = eminus + conj{gamma(j))*eplus;
err(Jj) = templ’*templ+temp2’*temp2;
eplus = templ(2:N);
eminus = temp2{1:N-1);
N=N-1;
end;

Figure 6.17 A MATLAB program for finding the reflection coefficients corresponding to a pth-order
model for a signal x(n) using Burg’s method.

Eq. (6.80) and, therefore,
D; =&, —lef (G — DI = lej_,(N)? (6.83)

This, however, is equivalent to the term in braces in Eq. (6.81). Thus, substituting Eq. (6.83)
into Eq. (6.81) we have

B _ B2
& =p,[1- 117 (6.84)
Since
Djp =& — lef (HIF — le; (M) (6.85)
incorporating Eq. (6.84) into Eq. (6.85) we have the desired recursion,

Dy = D;[1-ITPF| =~ lef (DI = lej (DP? (6.86)

The equations for the Burg recursion are summarized in Table 6.1. From this table we
may evaluate the computational requirements of the Burg algorithm. First, note that in order
to initialize the recursion we need N multiplications and N — 1 additions (assuming the
multiplication by 2 can be done with a data shift). Since the evaluation of the error &; at each
stage of the recursion is not necessary, at the jth step of the recursion there are 3(N — j)+7
multiplications, 3(N — j) + S additions, and one division. Finally, since step 2(a) is the
only calculation that needs to be performed during the last stage of the recursion, (; = p),
then the total number of multiplications is

p—1 3
N+Y [BWN-)H+7]+N-p+1=N@Gp-1)~ 5P(P=D+6(p—1) (6.87)
j=1

320 LATTICE FILTERS

Table 6.1 The Burg Recursion

1. Initialize the recursion
(@) ef (n) =e; (n) = x(n)

N
® D=2 {lxm - |x(- D}

n=1

2. Forj=1top

a)If= —%j- ijef_,(n)[ef_l(n - l)]*

b) Forn=jto N
ef(ny=¢f () +Tfe (n—1)
e;(n)=¢_;(n— 1+ (TP) e (n)

& Dy = ;1= ITP) = 1])P = ley (WP

d) £ = D;[1-|r??]

and a similar number of additions. Therefore, assuming that N > p, the Burg recursion
requires on the order of 3N p multiplications and additions. The autocorrelation method, on
the other hand, requires only p? + 2 p multiplications and p? additions to solve the autocor-
relation normal equations using the Levinson-Durbin recursion. In addition to this, however,
is the requirement for computing the p + 1 autocorrelations r, (k) fork =0, 1, ..., p. For
a sequence of length N this requires approximately an additional N (p + 1) multiplications
and additions. Both approaches, therefore, require on the order of Np multiplies and adds.

Example 6.5.3 The Burg Recursion

Let us compute the reflection coefficients for the exponential signal
x(n)y=p"un) ; n=0,1,....,N

using Burg’s method. Using the norms and inner products derived in Examples 6.5.1 and
6.5.2 we find for the first-order Burg model

(eg. €) _ 2B
leg 12 + lleg 112 1+ B2

rg=-2

Note that |T'#| < 1 for any value of 8. Updating the forward and backward errors,

ef(n) = ef(m) +Tleg(n—1) = B u(n) + T lutn—1)
ef(n) =e(n—1)+ Ffeg(n) =" lun -1 + Ffﬂ"u(n)

Computing the error norms and inner products for efL (n) and e; (n) we have, after a lot of
algebra,

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 321

2 ST 4 5 1= p2Nb
lef1? = ;[e. mF = B0 = B~y

- N _ 5 5 1—,82(N_I)
leTI? = ;[e. (n=DF = (=B =7 g

S 3 + - 2 2 1_"8__2(N_I)
e, ef) = ;el (mey(n—-1) = —-p“(1-p) (1 + g2)?

Thus, the second reflection coefficient is equal to
Pl lhed _, pa-py ¥
lef 12+ ey 1> AU -BH+(A-p) 1+p
Let us now evaluate the Burg error for this model using the recursion given in Eq. (6.81).
Assuming that N > 1 and |8| < 1, for the zeroth-order error we have

N 2N+
B=2 2 =2 =~
& ;x (m 1 - B2 1 - B2

For the first-order error,

g8 = {53 ~[et @] - [e5<N)]2][1 —1ree]

- !gg -1 —,92N][1 -]

Finally, for the second-order error we find, after some algebra,
ef = {er - [T - [P |1 - in2r]

_a=p?
T 1+

As a final example, we again consider the signal in Example 6.5.1 which is the unit
sample response of the second-order system

-1
—0.12z71 - 0.456772 + 0.6z73
which has lattice filter coefficients
T =[0.6, 0.6, 0.6]"

Using the MATLAB program for the Burg algorithm we find, with p = 3 and N = 60, the
reflection coefficient sequence

H(z) = 7

re = [0.6753, —0.6653, 0.8920]T
which corresponds to a filter having a system function

1
—-0.3675z71 — 0.4637z2 + 0.8920z 3

Hiy(z) = 1

322 LATTICE FILTERS

Furthermore, the sequence of squared errors is

£8 = [3.4371, 15627, 0.3134]"

Again, if we increase the model order to p = 5, the next two reflection coefficients are
r? =-05324 ; r?=0039

and the corresponding errors are

8 =02027 ; &£ =0.2022

An interesting property of the Burg algorithm is that I’ f is the harmonic mean of the
reflection coefficients l";r and I';". Specifically, note that if we are given the forward and
backward prediction errors ej" (n) and e (n), and if we were to compute the jth reflection
coefficient using the forward covariance method, the backward covariance method, and
Burg’s method, then these reflection coefficients would be related to each other as follows®

2 1 1

= — 4+ — (6.88)
B ¥ =

l"j l"j ;

It is important to be careful in using this equation, however, because it does not imply that
we may use the forward and backward covariance methods to compute l"f and I';” and then
use Eq. (6.88) to find I" f . This relationship between the reflection coefficients is only valid
when l"f and I';” are computed using the forward and backward prediction errors that are
produced with the Burg algorithm, i.e., using the lattice filter with reflection coefficients I' jB.

6.5.5 Modified Covariance Method

In the previous section we derived the Burg recursion, which finds the reflection coefficients
for an all-pole model by sequentially minimizing the sum of the squares of the forward and
backward prediction errors. In this section we look at the modified covariance method or
Sforward-backward algorithm for all-pole signal modeling. As with the Burg algorithm, the
modified covariance method minimizes the sum of the squares of the forward and backward
prediction errors,

M _ -
gp —_5/-: +5p

The difference, however, between the two approaches is that, in the modified covariance
method, the minimization is not performed sequentially. In other words, for a pth-order
model, the modified covariance method finds the set of reflection coefficients or, equiva-
lently, the set of transversal filter coefficients a,(k), that minimize 5,’,” .

To find the filter coefficients that minimize £ [1,"’ we set the derivative of £ ,’,” with respect

to a,’j(l) equal to zerofor/ = 1,2, ..., p as we did in the covariance method. Since
14
ef(n) =x(m)+ Y _ a,(k)x(n —k) (6.89)
k=1

3This relationship follows directly from the definitions given in Egs. (6.74), (6.66) and (6.68).

LATTICE METHODS FOR ALL-POLE SIGNAL MODELING 323

and
P
e,(n)=x(n—p)+ a’(kx(n—p+k) (6.90)
=7
then
LA N] LA (O] | Tn ()
30 = 2% O g T]

N
=Y [-+ [Gm] xn—p+n]=0 691
14

Substituting Eqgs. (6.89) and (6.90) into Eq. (6.91) and simplifying we find that the normal
equations for the modified covariance method are given by

M~

[ret. 0+ retp =k p = D]ap®) = [.0 +rcp, p = D):

I=1...,p

(6.92)

x-
[

where

N
re k) =Y x(n—k)x*(n—1) (6.93)

n=p

Recall that if we were to use the covariance method and minimize 5; , then the normal
equations would be

p

> el kyay k) = —r.(d, 0) (6.94)

k=1

On the other hand, if we were to minimize f,'p‘ , then the normal equations would be

L

D relp —k, p—Dapk) = —rc(p, p—1) (6.95)
k=1

Therefore, the normal equations for the modified covariance method is a combination of
these two sets of equations. ‘
For the modified covariance error,

Y 2 2
& =3 {lesmf + ey |’}

n=p

we may use the orthogonality condition in Eq. (6.91) to express 5:," as follows
N
&l = Z [ef (mx*(n) + [e, ()] x(n — p)]
n=p

Substituting the expressions given in Egs. (6.89) and (6.90) for e; (n) and e, (n) and sim-
plifying, we have

324 LATTICE FILTERS

The Modified Covariance Method

function [a,err] = mcov(x,p)

%

X = x(:);

N = length(x);

if p>=length(x), error(’'Model order too large’), end
X = toeplitz(x(p+1:N),flipud(x(l:p+1)));
R = X'*X;

Rl = R(2:p+1,2:p+1);

R2 = flipud(fliplr(R(l:p,1:p)));

bl = R(2:p+1,1);

b2 = flipud(R(1l:p,p+1));

a = [1 ; -(R1+R2)\ (bl+b2)];

err = R(1,:)*a+fliplr (R(p+1,:)) *a;

end;

Figure 6.18 A MATLAB program for finding a pth-order all-pole model for a signal x(n) using the
modified covariance method.

p
EM =1 (0,0) + e (p, p) + D _ a(®)[re (0, k) +r:(p, p — k)] (6.96)
k=1

A MATLAB program for finding a pth-order all-pole model for x (n) is given in Fig. 6.18.

Example 6.5.4 The Modified Covariance Method
Let us use the modified covariance method to find a second-order all-pole model for
x(n) = B"u(n)

which is assumed to be known forn = 0, 1, 2, ..., N. We begin by evaluating the autocor-
relations given in Eq. (6.93). With p = 2 we have

N N
rk D) =) BT =gy B
n=2 n=2

1 —g2xN-h o
= g* — B klEAﬂ4kl
where we have defined, for convenience,
1 — gxN=1)
Pl S
1-—p°2

The coefficients of the second-order model, a(1) and a(2), are the solution to the linear
equations

(LD +r(1, 1) re(1,2) 4740, 1) aly | | n(L,O)+r:(2, 1)
re(2, 1) +r(1,0) re(2,2) +1:(0,0) a) | r:(2,0) +r:(2,0)

STOCHASTIC MODELING 325

Inserting the computed values for r, (k,) we have

N 288 B+8 |[ay] _ NEALS
B+B 148 || a@ | 2p?
Solving these equations for a(1) and a(2) we find that a(1) = —(1 + g%)/B and a(2) = 1
which leads to an all-pole model with

1+82 |
Z +z
B

Note that since the roots of A(z) are at z = B and z = 1/8 then the model is unstable for
any value of 8. We find an interesting result, however, when when we examine the error.
Inserting the given values for the autocorrelations and the computed values for a(k) into
Eq. (6.96) we have »

£ = 1[4 +1+a) (B + %) +a(2) (287)]
1+ B2
=Bt +1-
P T8

A@ =1~

ﬂu+ﬂ%+2f]=0

Thus, the sum of the squares of the forward and backward prediction errors is equal to zero!

6.6 STOCHASTIC MODELING

In Section 6.5 we considered several different approaches for all-pole modeling of determin-
istic signals. As discussed in Section 4.7 of Chapter 4, in some applications it is necessary to
find models for stochastic processes. We may easily adapt the lattice methods developed in
this chapter to stochastic processes by replacing the least squares errors with mean-square
errors. For example, we may use the forward covariance method to model a stochastic pro-
cess x (n) as the output of an all-pole filter driven by white noise by sequentially minimizing
the mean-square forward prediction error,

& = E{lef)|’}

As we did in the deterministic case, the value for I‘;r that minimizes & j.+ is found by setting

the derivative of &;" with respect to (I';")* equal to zero and solving for I';". The result, not
too surprisingly, is

Eler. w[e_,(n — D]
rf=_— [“_["]] 6.97)
y E{lej_,(n — D2}

which is related to the reflection coefficients in the deterministic case by replacing the sums
in Eq. (6.66) with expectations. Instead of & j+, if we minimize the mean-square backward
prediction error,

& = Ef|e; |’}

326 LATTICE FILTERS

then we find that the jth reflection coefficient is given by

Elef (e ¢~ D))

rm=- (6.98)
! E{le;_ (m)1?}
On the other hand, minimizing the mean-square Burg error
&7 = E{lef o[+ |7 |}
results in reflection coefficients given by
E{el (m[ej_;(n — D]
r?=—2 14 d | (6.99)

E{le P} + E{le = 112}

Of course, in any practical application these ensemble averages are unknown and it is neces-
sary to estimate them from the given data. Replacing the expected values with estimates that
are formed by taking time averages, however, takes us back to the deterministic techniques
discussed in Section 6.5. For example, if we use the estimates

N
Elef e = DT | = 3¢ e ¢ - D]

n=j

and
N
Elleml) =Yl
n=j

in Eq. (6.97), then we have the expression for Fj+ given in Eq. (6.66).

Using the stochastic formulation of the lattice all-pole signal modeling techniques, we
may establish some useful and interesting orthogonality relations. In the deterministic case
these relations may be assumed to be approximately true. One orthogonality relation that we
will find particularly useful in our discussions of adaptive lattice filters (see Section 9.2.8)
is the condition that the backward prediction errors e; (n) and e (n) are orthogonal when

i #J,
E{e;(n)[e;(n)]*]=0 C it

To establish this orthogonality relation, recall from Eq. (6.12) that the backward prediction
errors e (n) are generated by filtering x (n) with the backward prediction error filter A f ()
as follows
J
e; (n) = x(n) x af(n) =x(n—j)+ Za}‘(k)x(n —j+k
k=1

SUMMARY 327

Writing these equations in matrix form for j =0, 1, ..., p we have
B e;(n)] [1 0 0 T x(n) 7

e; (n) ay(l) 1 0 e 0 x(n-1

esm) | = a3 a31) 1 o 0 x(n —2) (6.100)
| e, (n) | | a(p) axp-1) aip-2) - 1]L x(n—p)

which may be written in vector form as follows
e (n) = ATx(n)

where A, is the matrix of predictor coefficients defined in Eq. (5.84) (see p. 250). Therefore,
it follows that the correlation matrix for the backward prediction errors is

E{[e-m)] [e"m)]"} = E{A¥x*(n)x" (1)A,} = AZR,A,

where R,, is the autocorrelation matrix for x(n). However, as we saw in Section 5.2.7, the
matrix A, diagonalizes the autocorrelation matrix R,. Therefore

E{[e-m] [e-m]"} =D, = diagleo, €1, ..., €p)

and we have

E[e;(n)[ej-(n)]*}=[eof i (6.101)

and the backward prediction errors are orthogonal. Thus, the lattice filter transforms the input
sequence, x(n), x(n — 1), ..., x(n — p) into an orthogonal sequence, ¢; (n),] (n), ...,
e, (n). This orthogonalization results in a decoupling of the successive errors form from
each other.

6.7 SUMMARY

In the first part of this chapter we derived a number of different lattice filter structures
for all-zero, all-pole, and pole-zero filters. These lattice filters are important in signal pro-
cessing applications due their modularity, robustness to finite precision effects, and ease in
ensuring filter stability. Using the Levinson-Durbin recursion, we derived a two-multiplier
lattice filter and showed how the forward and backward prediction errors, e;r(n) and e (n),
respectively, are generated by this filter. Another FIR lattice filter structure, one that is based
on the three-term recurrence for the singular predictor polynomials, S;(z), was then derived.
This structure, known as the split lattice filter, is parameterized in terms of the coefficients
d; produced by the split Levinson recursion. Next, we developed several different lattice
filter structures for all-pole filters. Beginning with the two-multiplier all-pole lattice that
follows directly from the FIR lattice filter, it was shown how this structure could be used to
implement an allpass filter. Through a sequence of flowgraph manipulations, we then de-
rived the Kelly-Lochbaum lattice filter, the normalized lattice filter, and the one-multiplier
lattice filter. Finally, a lattice filter structure was presented for implementing a filter that

328 LATTICE FILTERS

has both poles and zeros. This structure consists of an all-pole lattice along with a set of
tap weights c, (k) that form a linear combination of the backward prediction errors e (n)
to produce the filter output.

The second part of the chapter was concerned with the application of lattice filters to
signal modeling. Since a lattice filter is parameterized in terms of its reflection coefficients,
I';, or some set of parameters derived from these coefficients, we considered a number of
different ways to optimally select the reflection coefficients. The first approach, known as
the forward covariance method, involved the sequential minimization of the forward pre-
diction error using a covariance-type error, i.e., one that does not require knowledge of the
signal outside the interval [0, N]. The second, the backward covariance method, performed
a sequential minimization of the backward prediction errors. Since neither the forward nor
the backward covariance methods produce a model that is guaranteed to be stable, we then
considered the sequential minimization of the Burg error, which is the sum of the forward
and backward prediction errors. It was shown that the sequential minimization of the Burg
error leads to a model that is guaranteed to be stable. Finally, we consided the modified
covariance method, which drops the requirement that the minimization of the Burg error
be done sequentially, and finds the global minimum. Although optimum in the sense of
minimizing the Burg error, the model produced with this method is not guaranteed to be
stable.

In the last section of this chapter, we looked briefly at how the lattice methods for
modeling deterministic signals may be generalized to model stochastic processes. What
we saw was that a stochastic signal model may be derived using the approaches used for
deterministic signals by simply replacing the inner product for deterministic signals with
an inner product that is appropriate for stochastic processes, i.e., the expected value of the
product of two processes.

References

1. J. Burg, “Maximum entropy spectral analysis,” Proc. 37th Meeting of Soc. of Exploration Geo-
physicists, Oklahoma City, OK., October 1967 (reprinted in Modern Spectrum Estimation, D.G.
Childers, Ed., IEEE Press, New York).

2. J. Burg, “Maximum entropy spectral analysis,” Ph.D. dissertation, Stanford University, Stanford,
CA, May, 1975.

3. J. R. Deller Jr., J. G. Proakis, and J. H. L. Hansen, Discrete-time Processing of Speech Signals,
MacMillan, New York, 1993.

4. P. Delsarte and Y. V. Genin, “On the splitting of classical algorithms in linear prediction theory,”
IEEE Trans. Acoust., Speech, Sig. Proc., vol: ASSP-35, no. 5, pp. 645-653, May 1987.

5. FE Itakura and S. Saito, “Digital filtering techniques for speech analysis and synthesis,” 7th Int.
Conf. Acoustics, Budapest, 1971, Paper 25-C-1.

6. J. L. Kelly and C. C. Lochbaum, “Speech synthesis,” Proc. 4th Int. Congress on Acoust., vol.
G42, pp. 14, 1962,

7. J. Makhoul, “A class of all-zero lattice digital filters: Properties and applications,” IEEE Trans.
Acoust., Speech, Sig. Proc., vol. ASSP-26, no. 4, pp. 304-314, Aug. 1978.

8. J. Makhoul, “Stable and efficient lattice methods for linear prediction,” IEEE Trans. Acoust.,
Speech, Sig. Proc., vol. ASSP-25, no. 5, pp. 423-428, October 1977.

9. J. D. Markel and A. H. Gray, Jr., Linear Prediction of Speech, Springer-Verlag, New York, 1976.

10. J. D. Markel and A. H. Gray, Jr., “Roundoff noise characteristics of a class of orthogonal poly-
nomial structures,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-23, no. 5, pp. 473-486,
October 1975.

11. S.J. Orfanidis, Optimal Signal Processing: An Introduction,2nd Ed., Macmillan, New York, 1988.

12. E. A. Robinson and S. Treitel, Geophysical Signal Analysis, Prentice-Hall, Englewood Cliffs,
N.J., 1980.

PROBLEMS 329

13. R. Viswanathan and J. Makhoul, “Quantization properties of transmission parameters in linear
predictive systems,” JEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-22, no. 3, pp. 309-321,
June 1975.

6.8 PROBLEMS

6.1. Design a two-pole lattice filter that has poles at re/? and re™/¢ and draw a carefully
labeled flowgraph of your filter.
6.2. Consider the all-pole filter
1
1-02z7"4+09z72+0.6z73
Draw the flowgraph for a lattice filter implementation of H (2) using

H(z) =

(a) A Kelly-Lochbaum lattice filter.
(b) A normalized lattice filter.
(c) A one-muliplier lattice filter.

For each structure, determine the number of multiplies, adds, and delays required to im-
plement the filter and compare them to a direct-form realization of H (z). Based solely on
computational considerations, which structure is the most efficient?

6.3. Find the system function H (z) for the lattice filter given in the figure below.

x(n)

A\

y(:l)
6.4. Sketch a lattice filter structure for each of the following system functions.
2—z7!
H(z) = -
@ H@) = 10071 10492
1+1.3125z7" +0.75z72
b) H(z) = '
®) H@) = 0 875014 0.75:2
0.75+ 0.875z7" +z72
H =
© H@ = 087521 +0.757 2
6.5. Determine the system function of the lattice filter shown in the figure below.
x(n) 1.4 0.7 1.2
04Y -0.4 -03Y 0.3 0.2 -0.2 Y
! ! !
o > -+ -+ < < -
0.6 1.3 08
02Y 05Y 0.3 —0.1 Y
R y(n)

> O—»
> O » O L

330 LATTICE FILTERS

6.6. Shown in the figure below is a split lattice filter.

x(n) 77! -16 7! v(n) y(n)

Y
A
A

A\

7 -0.72 -1.5 -

(a) What is the order of the filter (number of poles and zeros)?
(b) Does this filter have minimum phase?
(c) Find the system function H(z) = Y(2)/ X ().
(d) What is the transfer function V (z2)/ X (z) between x(n) and v(n)?
(e) How would you modify this structure to add a zero in H(z) at z = —1?
6.7. True or False: Let H(z) be the system function of a linear shift-invariant filter with
coefficients a,(k) and b,(k), and let I'; and c, (k) be the coefficients in the lattice filter
realization of H(z). If a, (k) and b, (k) are modified as follows
@) = (=Drapk) 5 Bpk) = (=1)*b,(k)
then the coefficients in the lattice filter are modified in the same way, i.e.,
To= (DT 5 0 = (=D¥c(b)
6.8. Asshownin Fig. 6.2b, a lattice filter may be used to generate the forward and backward
prediction errors, e;,“ (n) and e, (n), respectively.
(a) What s the relatiounship between the magnitudes of the discrete-time Fourier transforms
of e} (n) and e, (n)?
(b) Isitpossibletodesigna realizable filter (causal and stable) that will produce the response
e, (n) to the input e;r (n)? If so, describe how and, if not, state why not.
(c) Is it possible to design a realizable filter that will produce the response e;“ (n) to the
input e, (n)?1f so, describe how and, if not, state why not.

6.9. The all-pole lattice filter in Fig. 6.7 may be used to generate the all-pole approximation
X(n) to a signal x(n). In this problem, we investigate another use for this filter. Suppose
ef (n) is initialized to one at time n = 0, and all of the remaining states are set equal to
zero. Determine the output of the all-pole filter for n = 1,2, ..., N. Hint: Consider the
expression for y; given in Eq. (5.10) of Chapter 5.

6.10. Consider the following modification to the Burg error
N
gjw = Z w;(n) [|e;r(n)|2 + |ej_(n)|2}
n=j

where w;(n) is a window that is applied to the forward and backward prediction errors.

(a) Derive an expression that defines the value for the reflection coefficient '}’ that mini-
mizes the modified Burg error £}

(b) What conditions, if any, are necessary in order to guarantee that the reflection coeffi-
cients are bounded by one in magnitude?

COMPUTER EXERCISES 331

6.11. Consider the sequence of reflection coefficients T'?, T/, and I'"™" where T/ is the

reflection coefficient proposed by Itakura and 1"1'-nin is the reflection coefficient that is formed
using the minimum method (see Section 6.5.3).

(a) Establish the following relationship between these reflection coefficients:
i B |
o =< |07] < ||
(b) Are there any conditions under which all three reflection coefficients will be the same
for all j?

(c) Let F}” be the set of reflection coefficients corresponding to the all-pole model that is
derived from the modified covariance method. Is it possible to upper or lower bound
these coefficients in terms of l"f, 1"; ,or [n?

6.12. In Section 6.6 it was shown that the backward prediction errors are orthogonal, i.e.,

0 ; i#E]
Establish the following orthogonality conditions:
@) E{ef(mx*(n—-k}=0 ; 1<k=<i
(b) E{e; (mx*(n—k)} =0 ; O0<k=<i-]
© Elef(mx*(n)} = E{e; (n)x*(n— i)} =

Ele,.‘(n)[ej‘(n)]*] _ [€ ; i=]

6.13. In this problem it will be shown that the prediction error filters, A;(z), are orthogonal
on the unit circle. Specifically, let P, (e/“) be the power spectrum of a zero mean random
process x(n) and let A;(z) be the system function of the jth-order prediction error filter.
Show that these polynomials satisfy the orthogonality property

¥ 4
/ P (/) Aj(e/®) AL (e/®)dw = MSji

-~

and find an expression for the constant ;. Polynomials that satisfy this orthogonality con-
dition are called Szeg6 polynomials.

e
Computer Exercises

C6.1. One approach for estimating the frequency of a sinusoid from noisy samples is to
use a constrained lattice filter. Specifically, consider the following signal

y(n) = x(n) + w(n)
where
x(n) = Acos(nwg + ¢)

and w(n) is white Gaussian noise with a variance of cruz). Consider the constrained second-
order lattice filter shown in the figure below where the second reflection coefficient has been
set equal to one.

332 LATTICE FILTERS

€5 (n)

y(n) Ty

ot v/]

Z 2

e, (n)

The outputs of the lattice filter, e;“ (n) and e; (n), are the second-order forward and backward
prediction errors, respectively.

(a)

(®)

(©
(d

(e)

®

Find the location of the zeros of the lattice filter as a function of the reflection coefficient
r,.

Given y(n) forn = 0,1,..., N — 1, suppose that we would like to estimate the
frequency of the sinusoid. One way to accomplish this is to find the value of the reflection
coefficient '} in the constrained lattice filter that minimizes some error that depends
upon e;r (n) and &5 (n), and to use this reflection coefficient to estimate the frequency.
Derive an expression for the value of I'; that minimizes the error

N-1

£ = {lef P +[e; T}

n=2
Your expression should be expressed only in terms of the observations y(n).
Describe how you would use I'y found in part (b) to estimate the frequency wy.

Evaluate the performance of your constrained lattice filter in estimating the frequency
of the sinusoid. Consider the effect of the data record length, signal to noise ratio,
A%/, and frequency, wy. Compare the performance of the constrained lattice filter to
frequency estimates derived from the Burg algorithm, the modified covariance method,
and the autocorrelation method.

How may this frequency estimation technique be modified to estimate the frequency of
a complex harmonic process, i.e., if

y(n) = x(n) + wn) for n=0,1,...,N—1
where
x(n) = Ae) (nwote)
and w(n) is complex white Gaussian noise.

How may the frequency estimation technique in part () be modified to estimate the
frequencies of two complex-valued harmonic processes:

y(n) = Alej(nw1+¢1) + Azej("wz+¢z) +w(n)

C6.2. In Section 6.4.3 we presented a recursion for converting the direct-form coefficients
b, (k) into the lattice filter coefficients c, (k) and a recursion for converting the coefficients
¢q (k) into by (k).

(a)
()

Create an m-file btoc . m for converting the coefficients b, (k) into c, (k).

Create an m-file ctob. m for converting the coefficients ¢, (k) into b, (k).

COMPUTER EXERCISES 333

C6.3. The m-file f£cov.m given in Fig. 6.15 finds a model for a signal x(n) using the
forward covariance method. Modify this program and create an m-file bcov . m that will
find a model for x (n) using the backwards covariance method.

C6.4. Consider the signal x(n) = (n + Du(n) forn =0,1,..., N.

(a) Find the first-order model and the minimum error using the covariance method, the
forward and backward covariance methods, the Burg algorithm, and the modified co-
variance method. Comment on the differences in the models and compare x (n) to the
model, x(n).

(b) Repeat part (a) using a second-order model. What behavior do you observe for the
forward and backward covariance methods?

(c) Examine what happens using the Burg algorithm for model orders p > 2. Can you
suggest a way to estimate the model order by looking at the sequence of errors £ jB ?

(d) Repeat parts (a) and (b) for the signal x(n) = n(0.9)". Add noise to x(n) and discuss
the sensitivity of your model to the noise.

C6.5. Generate a signal, x(n), of the form

x(n)y=o"+p"

forn=0,1,2,...,15.

(a) With @ = 0.8 and 8 = 1.25, find a second order all-pole model for x(r) using the
modified covariance method. What is the modeling error? What can you say about the
stability of the model?

(b) Repeat part (a) using Burg’s method, the covariance method, and the autocorrelation
method. Discuss the differences that you observe between each of the modeling tech-
niques.

(c) Repeat parts (a) and (b) witha = 0.75and 8 = 2.

C6.6. Write an m-file for finding the model for a signal using the method proposed by
Itakura (see Section 6.5.3). Compare the effectiveness of Itakura’s method to the forward
covariance method and Burg’s method on a number of different signals.

C6.7. Modify the m-file for the Burg algorithm given in Fig. 6.17 to incorporate the re-
cursion for the denominator given in Eq. (6.86). How much savings is there in terms of the
number of multiplies and adds? Do you notice any degradation in the algorithm resulting
from numerical errors introduced by finite precision effects?

OPTIMUM FILTERS

7.1 INTRODUCTION

The estimation of one signal from another is one of the most important problems in signal
processing and it embraces a wide range of interesting applications. In many of these
applications the desired signal, whether is it speech, a radar signal, an EEG, or an image, is
not available or observed directly. Instead, for a variety of reasons, the desired signal may
be noisy and distorted. For example, the equipment used to measure the signal may be of
limited resolution, the signal may be observed in the presence of noise or other interfering
signals, or it may be distorted due to the propagation of the signal from the source to the
receiver as in a digital communication system. In very simple and idealized environments,
it may be possible to design a classical filter such as a lowpass, highpass, or bandpass filter,
to restore the desired signal from the measured data. Rarely, however, will these filters be
optimum in the sense of producing the best estimate of the signal. Therefore, in this chapter
we consider the design of optimum digital filters, which include the digital Wiener filter
and the discrete Kalman filter [2].

In the 1940s, driven by important applications in communication theory, Norbert Wiener
pioneered research in the problem of designing a filter that would produce the optimum
estimate of a signal from a noisy measurement or observation. The discrete form of the
Wiener filtering problem, shown in Fig. 7.1, is to design a filter to recover a signal d(n)
from noisy observations

x(n) =d(n) +vin)

Assuming that both d(n) and v(n) are wide-sense stationary random processes, Wiener
considered the problem of designing the filter that would produce the minimum mean-
square error estimate of d(n). Thus, with

£ = E{le(n)|*}
where
e(n) = d(n) — d(n)

Q1R

336 OPTIMUM FILTERS

8(n) dmy e(n)
—_— W(2) >

Y

Figure 7.1 lllustration of the general Wiener filtering problem. Given
two wide-sense stationary processes, x (n) and d (n), that are statistically
related to each other, the filter W (z) is to produce the minimum mean-
square error estimate, d (n), of d(n).

the problem is to find the filter that minimizes £&. We begin this chapter by considering the
general problem of Wiener filtering in which a linear shift-invariant filter, W (z), is to be
designed that will filter a given signal, x (r), to produce the minimum mean square estimate,
d (n), of another signal, d (rn). Depending upon how the signals x (n) and d(n) are related to
each other, a number of different and important problems may be cast into a Wiener filtering
framework. Some of the problems that will be considered in this chapter include:

1. Filtering. This is the classic problem considered by Wiener in which we are given
x(n) = d(n) + v(n) and the goal is to estimate d(n) using a causal fiter, i.e., to
estimate d(n) from the current and past values of x(n).

2. Smoothing. This is the same as the filtering problem except that the filter is allowed
to be noncausal. A Wiener smoothing filter, for example, may be designed to estimate
d(n) from x(n) = d(n) 4+ v(n) using all of the available data.

3. Prediction. If d(n) = x(n 4+ 1) and W (2) is a causal filter, then the Wiener filter
becomes a linear predictor. In this case, the filter is to produce a prediction (estimate)
of x(n + 1) in terms of a linear combination of previous values of x(n).

4. Deconvolution. When x(n) = d(n) * g(n) + v(n) with g(n) being the unit sample
response of a linear shift-invariant filter, the Wiener filter becomes a deconvolution
filter.

First, we consider the design of FIR Wiener filters in Section 7.2. The main result here will
be the derivation of the discrete form of the Wiener-Hopf equations which specify the filter
coefficients of the optimum (minimum mse) filter. Solutions to the Wiener-Hopf equations
are then given for the cases of filtering, smoothing, prediction, and noise cancellation. In
Section 7.3 we then consider the design of [IR Wiener filters. First, in Section 7.3.1 we solve
the noncausal Wiener filtering problem. Then, in Section 7.3.2, the problem of designing
a causal Wiener filter is considered. Unlike the noncausal Wiener filter, solving for the
optimum causal Wiener filter is a nonlinear problem that requires a spectral factorization
of the power spectrum of the input process, x(n). The design of a causal Wiener filter is
illustrated with examples of Wiener filtering, Wiener prediction, and Wiener deconvolution.
Finally, in Section 7.4 we consider recursive approaches to signal estimation and derive
what is known as the discrete Kalman filter. Unlike the Wiener filter, which is a linear
shift-invariant filter for estimating stationary processes, the Kalman filter is shift-varying
and applicable to nonstationary as well as stationary processes.

THE FIR WIENER FILTER 337

7.2 THE FIR WIENER FILTER

In this section we consider the design of an FIR Wiener filter that produces the minimum
mean-square estimate of a given process d(n) by filtering a set of observations of a statisti-
cally related process x (n). It is assumed that x(n) and d(n) are jointly wide-sense stationary
with known autocorrelations, r, (k) and r;(k), and known cross-correlation r4, (k). Denot-
ing the unit sample response of the Wiener filter by w(n), and assuming a (p — 1)st-order
filter, the system function is

p—1
W) =) wmz"

n=0

With x(n) the input to the filter, the output, which we denote by d(n), is the convolution of
w(n) with x(n),

p=1 .
diny =Y wlhx(n -1 (7.1)
=0

The Wiener filter design problem requires that we find the filter coefficients, w(k), that
minimize the mean-square error'

£ = E{le(m)*} = E{ld(n) — d(n)|*} (1.2)

Asdiscussed in Section 2.3.10 of Chapter 2, in order for a set of filter coefficients to minimize
& itis necessary and sufficient that the derivative of £ with respect to w* (k) be equal to zero
fork=0,1,...,p—1,

3 R de*(n) | _
o) aw*(k)E{e(n)e m})=E {e(n)aw*(k) =0 (7.3)
With
p—1
e(n) = d(n) — Z wl)x(n —1) (7.4)
=0
it follows that
der(m) .,
ey - R
and Eq. (7.3) becomes
Ele(mx*(n—k)} =0 ; k=0,1,...,p—1 1.5

which is known as the orthogonality principle or the projection theorem? Substituting
Eq. (7.4) into Eq. (7.5) we have
p—1

E{dmx*(n —k)} =Y whE{x(n —hx*n —k)} =0 (1.6)

=0

!'Note that our wide-sense stationarity assumption implies that the mean-square error does not depend upon 7.
2Compare this with the orthogonality principle in Chapter 4, p. 146.

338 OPTIMUM FILTERS

Finally, since x(n) and d(n) are jointly WSS then E{x(n — Dx*(n — k)} = ry(k — 1) and
E{d(n)x*(n — k)} = rqx(k) and Eq. (7.6) becomes

p—1
Y wyrk =1 =rs(k) 5 k=0,1,...,p—1 (1.7)
=0

which is a set of p linear equations in the p unknowns w(k), k =0, 1, ..., p — 1. In matrix
form, using the fact that the autocorrelation sequence is conjugate symmetric, (k) =
r¥(—k), Eq. (7.7) becomes

r:(0) re(l) eori(p—=1) w(0) r4x(0)

ry(1) r:(0) eori(p=2) w(l) Tax(1)

R@ r) e r(p—3) @ || m® | g
rp—1 ri(p-—-2) -- re(0) w(p—) rdx(p_l)

which is the matrix form of the Wiener-Hopf equations. Equation (7.8) may be written more
concisely as

R,w=r,, (7.9)

where R, is a p x p Hermitian Toeplitz matrix of autocorrelations, w is the vector of filter
coefficients, and ry, is the vector of cross-correlations between the desired signal d (n) and
the observed signal x (n).

The minimum mean-square error in the estimate of d(n) may be evaluated from Eq. (7.2)
as follows. With

£=E {|e(n)|2} — E[e(n)[d(n) - pZ_lw(l)X(n —l)]*]
=0

p-1
= Efe(md*(n)} = > w*E{e(m)x*(n —)} (7.10)
=0
recall that if w(k) is the solution to the Wiener-Hopf equations, then, it follows from Eq.

(7.5) that E{e(n)x*(n — k)} = 0. Therefore, the second term in Eq. (7.10) is equal to zero
and

p—1
bmin = Efemd*)} = E{[d0n = Y wx(n = n]d* o)}
=0

Finally, taking expected values we have

p—1
Emin = r4(0) — Y w(lyrj () (7.11)
=0
or, using vector notation,
Emin = 74(0) —tH w (7.12)

Alternatively, since

-1
w=R_"ry,

THE FIR WIENER FILTER 339

Table 7.1 The Wiener-Hopf Equations for the FIR Wiener Filter
and the Minimum Mean-Square Error

Wiener-Hopf equations

b
wrek =0 =raek) ;3 k=0,1,...,p—1
It

Il
<

Correlations
re(k) = E{x(m)x*(n — k)}
rax(k) = E{d(m)x*(n — k)}
Minimum error

p—1
fmin = ra(0) — Y _ wl)rj, ()
=0

the minimum error may also be written explicitly in terms of the autocorrelation matrix R,
and the cross-correlation vector r,, as follows:

Emin = r4(0) — LR 'ry, (7.13)

The FIR Wiener filtering equations are summarized in Table 7.1.

We now look at some Wiener filtering applications that illustrate how to formulate the
Wiener filtering problem, set up the Wiener-Hopf equations (7.9), and solve for the filter
coefficients.

7.2.1 Filtering
In the filtering problem, a signal d (n) is to be estimated from a noise corrupted observation
x(n) =dn) + vn)

Filtering, or noise reduction, is an extremely important and pervasive problem that is found
in many applications such as the transmission of speech in a noisy environment and the
reception of data across a noisy channel. It is also important in the detection and location
of targets using sensor arrays, the restoration of old recordings, and the enhancement of
images.

Using the results in the previous section, the optimum FIR Wiener filter may be easily
derived. It will be assumed that the noise has zero mean and that it is uncorrelated with
d(n). Therefore, E{d(n)v*(n — k)} = 0 and the cross-correlation between d(n) and x(n)
becomes

rax(k) = E{d(n)x*(n — k)}
E{d(n)d*(n — k)} + E{d(n)v*(n — k)}
= ra(k) (7.14)

Next, since
re(k) = E{x(n + k)x*(n)}
= E{[dn+ k) +v(n + B][d®) + v(m)]"} (7.15)

340 OPTIMUM FILTERS

with v(n) and d(n) uncorrelated processes it follows that
rye(k) = rg(k) + ry(k)

Therefore, with R, the autocorrelation matrix for d(r), R, the autocorrelation matrix for
v(n), and rgy = ry = [r4(0), ..., ra(p — 1)]7, the Wiener-Hopf equations become

[Ri+Ry]w=r, (7.16)

In order to simplify these equations any further, however, specific information about the
statistics of the signal and noise are required.

Example 7.2.1 Filtering
Let d(n) be an AR(1) process with an autocorrelation sequence
ratk) = o

with 0 < o < 1, and suppose that d(n) is observed in the presence of uncorrelated white
noise, v(n), that has a variance of 2

o
x(n) =d(n) +v(n)
Let us design a first-order FIR Wiener filter to reduce the noise in x(n). With
W(z) = w(©0) + w(l)z™
the Wiener-Hopf equations are
[7x(0) re(D)] [w(0)] _ [rax(0)]
re(1) rx(0) w(l) rax(1)
Since d(n) and v(n) are assumed to be uncorrelated, then
rax(k) = ra(k) = o
and
re(k) = ry(k) + ry(k) = o + 028 (k)

Thus, the Wiener-Hopf equations become

1+ o? o wO) 1 _[1
a l+0v2‘ w(l) |7]| o

Solving for w(0) and w(l) we have

w©) | _ 1 1402 —a?
wl) |7 (A+0h)?—a? ao;
Therefore, the Wiener filter is

W(z) = [(1+ 07 —a®) +aclz™"]

(1+02)?—a?

which has a zero at z = —a0?/(1 + 02 — &?). As a specific example, let « = 0.8 and
o2 = 1. In this case the Wiener filter becomes

W(e/?) = 0.4048 + 0.2381¢ 7%

THE FIR WIENER FILTER 341

which is a lowpass filter that has a magnitude response as shown in Fig. 7.2a. The fact
that W(e/®) is a lowpass filter should not be surprising. Specifically, note that the power
spectrum of d(n) is

1—a?

Py(e’®) =
4(€") = T rad) — 2cosw

which, for @ = 0.8 becomes

0.36
1.64 — 1.6cosw
as shown in Fig. 7.2b. Therefore, since P;(e/?) decreases with increasing w and since the
power spectrum of the noise is constant for all w, then the signal-to-noise ratio decreases
with increasing w. Thus, it follows that the filter should have a frequency response that has
a magnitude that decreases with increasing w. For the mean-square error, we have
, 1+o2—0a?
"(1402)? —a?

Py(el?) =

Emin = E{le(m)*} = ra(0) — w(©0)r},(0) —w(Drj () =0

which, for the case in which @ = 0.8 and 62 = 1, is &min = 0.4048.

Let us evaluate how much the signal-to-noise ratio is increased by using the Wiener
filter. Prior to filtering, since r4(0) = 02 = 1 and 62 = 1, then the power in d(n) is equal
to the power in v(n), E{|d(n)[?} = E{[v(n)|*} = 1, and the signal to noise ratio (SNR)

Magnitude

0 1 1 | 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

Frequency (units of pi)

(a) The magnitude of the frequency response of the Wiener filter.

Magnitude

0 L L I } N N .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Frequency (units of pi)

(b) The power spectrum of an AR(1) process with an autocorrelation of r4 (k) = 0.8,

Figure 7.2 FIR Wiener filter for filtering an AR(1) process in white noise.

342 OPTIMUM FILTERS

is 0 dB. After filtering, it follows from Eq. (3.90) on p. 101 that the power in the signal

d'(n) = wn) xd(n)is
o] [w(0)] — 03748

E{Id'(n)lz} =w/R,w= [w(O) w(l)] [; 1 w(l)

and the noise power is

w(0)

Ewwmﬂ=W&M=Ww““”[M“

] = 0.2206

Therefore, the SNR at the output of the Wiener filter is

0.3748

Thus, the Wiener filter increases the SNR by more than 2dB.

7.2.2 Llinear Prediction

As discussed in previous chapters, linear prediction is an important problem in many signal
processing applications. With noise-free observations, linear prediction is concerned with
the estimation (prediction) of x(n + 1) in terms of a linear combination of the current and
previous values of x(n) as shown in Fig. 7.3. Thus, an FIR linear predictor of order p — 1
has the form

p—1
Fn+1)= Z w(k)x(n — k)
k=0

where w(k) for k =0, 1, ..., p — | are the coefficients of the prediction filter. The linear
predictor may be cast into a Wiener filtering problem by setting d(n) = x(n+1) inFig. 7.1.
To set up the Wiener-Hopf equations, all that is needed is to evaluate the cross-correlation
between d(n) and x(n). Since

rax(k) = E{d(m)x*(n —)} = E{x(n + Dx*(n —k)} =rek + 1)

then the Wiener-Hopf equations for the optimum linear predictor are

RO) Q@ =D w©) r(l)
n() @) =2 || w) ()
R®) RO -3 || w@ || n® | am
P -D (- rp-3 - rnO ||wp-D r(p)

and the mean-square error is

p—1
Emin = re(0) — Y w(k)rik +1)
k=0

Comparing Eq. (7.17) with the Prony all-pole normal equations given in Eq. (4.79) we see
that, except for the fact that r, (k) is a deterministic autocorrelation sequence in the Prony
all-pole normal equations and r, (k) is a stochastic autocorrelation in Eq. (7.17), the two
sets of equations are the same (the minus sign simply changes the sign of the coefficients).

THE FIR WIENER FILTER 343

fje—— pvalues — i+

ol [g1 IT _
o ll

—

Figure 7.3 Linear prediction is the problem of finding the minimum mean-
square estimate of x(n + 1) using a linear combination of the p signal values
fromx(n)tox(n—p+1).

Example 7.2.2 Linear Prediction

In this example we find the optimum linear predictor for an AR(1) process x(n) that has an
autocorrelation sequence given by

ra(k) = o
With a first-order predictor of the form
X+ 1D =wOxmn) +wDx(n—1)
the Wiener-Hopf equations are
LI -]
a 1 w) |~ | o
Solving for the predictor coefficients we find
R e |
w) |7 1—a2]| —a 1 a? |7

Therefore, the predictor for x(n + 1) is

i)

x(n+ 1) =axn)

and the value of x(n — 1) is never used in the prediction of x(n + 1). This result may be
explained intuitively as follows. Since x(n) is an AR(1) process, it satisfies a first-order
difference equation of the form ’

x(n)=ax(n — 1)+ v(n)
or, equivalently,
x(n+ 1) =ax(n)+vn+1)

Since v(n) is a white noise process, it cannot be predicted from previous values of either
x(n) or v(n). Therefore, the best estimate of x(n + 1) in terms of x(n) and x(n — 1) is
obtained by replacing v(n) with its expected value as follows

xin+ 1) =ax(n)+ E{v(n + 1)}
Since E {v(n + 1)} = O then Xx(n + 1) = ax(n) as before.

344 OPTIMUM FILTERS

The mean-square linear prediction error is
Emin = 1 (0) —wOr, (1) —wr,2)=1- o?

Note that as « increases, the correlation between successive samples of x (r) increases, and
the mean-square prediction error decreases. For an uncorrelated process, ¢ = 0 and

Emin = 1
which is equal to the variance of x(n), and the optimum predictor is
i(n+1)=0

1.e., the mean value of the process.

Thus far, we have assumed that x (rn) is measured in the absence of noise. Unfortunately,
this is typically not the case. A more realistic model for linear prediction is the one shown
in Fig. 7.4 in which the signal that is to be predicted is measured in the presence of noise.
With the input to the Wiener filter given by

y(n) =x@n) + v(n)

the goal is to design a filter that will estimate x(n + 1) in terms of a linear combination of
p previous values of y(n)

p-1 p-1
R+ D =) wkyn—k =Y wklxrn—k+v@-b)
k=0 k=0

The Wiener-Hopf equations are
R,w=ry,

If the noise v(r) is uncorrelated with the signal x(n), then Ry, the autocorrelation matrix
for y(n), is

ryk) = E{y(n)y*(n — k)} = re(k) + ry(k)
and ryy, the vector of cross-correlations between d (n) and y(n), »is
ray®) = E{d(m)y*(n —)} = E{x(n + Dy*(n =)} = rek + 1)

Thus, the only difference between linear prediction with and without noise is in the auto-
correlation matrix for the input signal where, in the case of noise that is uncorrelated with
x(n), Ry is replaced with Ry, = R, +R,.

v(n)

x(n) + y(m Fn+1)
" @) > W) A —

Figure 7.4 Wiener prediction in a noisy environment.

THE FIR WIENER FILTER 345

Example 7.2.3 Linear Prediction in Noise

Let us reconsider the linear prediction problem in Example 7.2.2 when the measurement of
x(n) is noisy. Suppose that

y(n) =x(n) +v(n)

where v(n) is zero mean white noise with a variance of af. Assuming that v(n) is uncorre-
lated with x(n), the Wiener-Hopf equations are

[R: + 02T w =14
where

ray(k) = ry(k+ 1)
If x(n) is an AR(1) process with an autocorrelation sequence

ry(k) = ol
for a first-order predictor
W(z) = w(0) + w(l)z™'
the Wiener-Hopf equations are
[l+0? «][w(O)]_[a]
o 1+ 02 w(l) |~ | o

Solving for the predictor coefficients, we find

w) | o 1+¢73—a2
[w(l)]_ (1 +0'v2)2-‘a2 [aaf] (7.18)

Note that as 02 — 0 the predictor coefficients approach the solution in the noise-free case,
ie.,w=[a, 0].

The previous two examples considered the problem of predicting x(n + 1) in terms of
a linear combination of the current and previous values of x (n). This problem, sometimes
referred to as one-step linear prediction, may be generalized to the problem of multistep
prediction shown in Fig. 7.5 in which x(n + «) is to be predicted in terms of a linear
combination of the p values x(n), x(n — 1), ..., x(n — p+ 1),

p—1
Fn+a) =) wk)x(n—k)
k=0

where « is a positive integer. In setting up the Wiener-Hopf equations for the multistep pre-
dictor, the only term that changes from the one-step linear predictor is the cross-correlation
vector Iy,. In multistep prediction, since d(n) = x(n + «), then

rax(k) = E{x(n + @)x*(n — k)} = re(a + k)

346 OPTIMUM FILTERS

i 8 I O O
[1

Figure 7.5 Multistep linear prediction. Based on a linear combination of the p values
x(n),x(n—1),...,x(n — p+ 1), the minimum mean-square estimate of x(n + «) is to
be found.

and the Wiener-Hopf equations become

r«(0) ri(l) ry2y -o-rj(p—1 w(0) re(o)

re(1) re(0) ri(l) - ri(p—2) w(l) re(a + 1)

re(2) re(1) re0 - ri(p—=3) w(2) - re(o +2)
(@ =1 r(p—2) ri(p—3) -+ rx(0) w(p—1) re@+p—1)

(7.19)
Equation (7.19) may be written in matrix form as

R,w=r,

where r,, is the vector of autocorrelations beginning with r, («). Finally, for the minimum
mean-square error it follows that

p—1
Emin = r2(0) — > w(k)ri(k +a) =r(0) —riw
k=0

We now look at an example of multistep linear prediction.

Example 7.2.4 Multistep Linear Prediction

Let us consider the problem of multistep prediction for a random process having an auto-
correlation sequence of the form

re(k) = 8(k) + (0.9)* cos(wk/4)
Thus, the first eight autocorrelation values are
r, = [2.0, 0.6364, 0, —0.5155, —0.6561, —0.4175, 0, 0.3382]"

We will begin with a first-order one-step linear predictor, which is the solution to the
following set of linear equations,

r(0) re(1) w0 | _ | (D)
r(1) re(0) w(l) | | (2

THE FIR WIENER FILTER 347

Using the given autocorrelation values and solving for the predictor coefficients, we find
[w(0)] _ [0.3540]
w(l) —-0.1127

Thus, the optimum one-step predictor is

x(n+1)=0.3540x(n) —0.1127x(n — 1)
and the minimum mean-square error, which we will denote by {&;}min, is

{&1}min = 1 (0) — w(O)r, (1) — w(D)r,(2) = 1.7747

Now, let us consider a three-step predictor. In this case, the Wiener-Hopf equations become

[r(© (1)] [w(0)] _ [e]

re(1) rx(0) w(l) re(4)

which leads to the following set of predictor coefficients,
w©) | _[—0.1706
w(l) |~ | —0.2738

x(n+3) = —-0.1706x(n) — 0.2738x(n — 1)

ie.,

For the mean-square error, {£3}min, We have
{&3}min = rx(0) — w(0)ry(3) — w(l)r,(4) = 1.7324

which is smaller than the mean-square prediction error using a one-step predictor. Therefore,
we have an interesting case in which it is easier to predict three samples ahead than it is to
predict the next sample. Although perhaps at first surprising, if we compare the values of the
autocorrelation sequence at lags k = 1, 2 (used in the one-step predictor), with the values
at lags k = 3, 4 (used in the three-step predictor), we find that there is a higher degree of
correlation between x(n + 3) and the two signal values that are used in the predictor, x(n)
and x(n — 1), than there is between x(n + 1) and the same two signal values. It is for this
reason that the minimum mean-square error is smaller for the three-step predictor than it is
for the one-step predictor.

Another way to look at the multistep predictor is in terms of a one-step predictor that uses
a linear combination of the values of x(n) over the interval extending from (n —a — p 4+ 2)
to (n — a + 1). Thus, as illustrated in Fig. 7.6, the multistep predictor may be expressed in
the form

p—1
Fn+ 1 =Zw(k)x(n—k—a+l) (7.20)
k=0

This interpretation also suggests the following interesting variation to the linear prediction
problem. With a linear predictor of the form given in Eq. (7.20), suppose that the delay o
is a free parameter and that the problem is to find the coefficients, w(k), along with the
delay « that minimize the mean-square prediction error. This design problem, summarized
in Fig. 7.7, is considered in the following example.

348 OPTIMUM FILTERS

j¢e—— pvalues —>}e— ¢ —’lf(n+1)

ol [oD L TITell
o l 1

n—a+1

Figure 7.6 Another interpretation of the multistep linear predictor.

x(n) x(n —a) x(n+1)

[7z ¢ >) W(Z) »

Figure 7.7 Linear prediction with a delay.

Example 7.2.5 Linear Prediction with the Optimum Delay

Suppose we reconsider Example 7.2.4 and allow the delay « to be a free variable. To design
the optimum linear predictor it is necessary to find the value for ¢r that gives the smallest
mean-square prediction error. This search may be simplified by writing the mean-square
error in the form

(Ealmin = r:(0) — 13'w
and using the fact that the vector of predictor coefficients may be written as
w=R'r,
Therefore, the minimum mean-square error is given by
{Eatmin = r:(0) — ri R 'rq

and, by precomputing R, the errors may be easily evaluated. Using this approach, the first
six values of {&, }min are found to be '

&1 min = 1.7747

{SZ}min = 1.8522
{&)min = 1.7324
{&4}min = 1.7605

{&5}min = 1.9030
{&6}min = 1.9364

Thus, for values of o between 1 and 6, @ = 3 gives the minimum mean-square error (this
also turns out to be the global minimum over all values of «).

THE FIR WIENER FILTER 349

7.2.3 Noise Cancellation

Another application of Wiener filtering is the problem referred to as noise cancellation. As
in the filtering problem, the goal of a noise canceller is to estimate a signal d(n) from a
noise corrupted observation

x(n) =d(n) +vi(n)

that is recorded by a primary sensor. However, unlike the filtering problem, which requires
that the autocorrelation of the noise be known, with a noise canceller this information
is obtained from a secondary sensor that is placed within the noise field as illustrated in
Fig. 7.8. Although the noise measured by this secondary sensor, v,(n), will be correlated
with the noise in the primary sensor, the two processes will not be equal. There may be a
number of reasons for this, such as differences in the sensor characteristics, differences in the
propagation paths from the noise source to the two sensors, and leakage of the signal d(n)
into the measurements made by the secondary sensor. Since v, (n) # v,(n) itis not possible
to estimate d(n) by simply subtracting v, (n) from x (n). Instead, the noise canceller consists
of a Wiener filter that is designed to estimate the noise v,(n) from the signal received by
the secondary sensor. This estimate, ¥ (), is then subtracted from the primary signal x(n),
to form an estimate of d(n), which is given by

d(n) = x(n) — 1 (n)

An example of where such a system may be useful is in air-to-air communications between
pilots in fighter aircraft or in air-to-ground communications between a pilot and the control
tower. Since there is often a large amount of engine and wind noise within the cockpit of
the fighter aircraft, communication is often a difficult problem. However, if a secondary
microphone is placed within the cockpit of an aircraft, then one may estimate the noise that
is transmitted when the pilot speaks into the microphone, and subtract this estimate from
the transmitted signal, thereby increasing the signal-to-noise ratio.

The Wiener-Hopf equations for the noise cancellation system in Fig. 7.8 may be derived
as follows. With v,(n) the input to the Wiener filter that is used to estimate the noise v, (n),
the Wiener-Hopf equations are

R,,w=r,,,,

where R,, is the autocorrelation matrix of v,(rn) and r,,,, is the vector of cross-correlations
between the desired signal v (n) and Wiener filter input, v,(n). For the cross-correlation

d(n) x(n) =d(n) + vi(n) e(n) = x(n) — V1(n)

Signal > m
Source +
v(n)
Noise Wiener
Source > Filter R
v(n) v2(n) vi(n)

Figure 7.8 Wiener noise cancellation using a secondary sensor to measure the additive noise v, (n).

350 OPTIMUM FILTERS

between v (n) and v2(n) we have

Fo (k) = E{v1(0)v3(n — b} = E{[x(n) —d(m)]v;(n — b))}

= E{x(mvi(n — b))} — E{d(n)vi(n — k)} (7.21)

If we assume that v;(n) is uncorrelated with d(n), then the second term is zero and the
cross-correlation becomes

o, (k) = E{x(m)v3(n — k) } = ry, (k) (7.22)
Therefore, the Wiener-Hopf equations are
R,,w =ryy, (7.23)

We will now look at a specific example.

Example 7.2.6 Noise Cancellation

Suppose that the desired signal d(n) in Fig. 7.8 is a sinusoid
d(n) = sin(nwy + ¢)

with wy = 0.057, and that the noise sequences v;(n) and v,(n) are AR(1) processes that
are generated by the first-order difference equations

vi(n) = 0.8vi(n—1) + g(n)
v2(n) = —0.6v2(n — 1) + g(n)

where g(n) is zero-mean, unit variance white noise that is uncorrelated with d(n). Shown
in Fig. 7.9a is a plot of 200 samples of x(n) = d(n) + v;(n) with the desired signal, d(n),
indicated by the dashed line, and shown in Fig. 7.9b is the reference signal v,(n) that is
used to estimate v (n). Estimating r,, (k) using the sample autocorrelation

N-1

|-
Futk) = 2 vamuain — k)
n:O

and r,,, (k) using the sample cross-correlation

R] Nl
e (k) = — Zx(n)vz(n — k)
N n=0
FIR Wiener filters of orders p = 6 and p = 12 were found by solving Eq. (7.23). Using
these filters to estimate v, (n), the sinusoid d(n) was then estimated by subtracting v,(n)
from x (n). The results are shown in Figs. 7.9¢ and d.

In typical applications, d(r) and v, (n) are often found to be non-stationary processes.
Therefore, the use of a linear shift-invariant Wiener filter will not be optimum. However, as
we will see in Chapter 9, an adaptive Wiener filter that has filter coefficients that are allowed
to vary as a function of time may provide effective noise cancellation in nonstationary
environments.

THE FIR WIENER FILTER

351

R 1 1 1 | 1 1 1
0 20 40 60 80 100 120 140 160 180 200
(a)
T T T T T T T L T
6_ . -
4t - .
0 I I ! l,
-2F ~
-4 .
__6_ R -
1 1 1 l 1 L 1 1 1
0 20 40 60 80 100 120 140 160 180 200

-3 1 1 1 I L]] 1 1
0 20 40 60 80 100 120 140 160 180 200
©
3 T T T T T T T I l
2 _

-3 1 1 | L |

0 20 40 60 80 100
(d

|
120

1
140

1
160

1
180

200

Figure 7.9 Noise cancellation example. (a) Noise corrupted sinusoid, (b) Reference signal
used by secondary sensor, (c) Output of sixth-order Wiener noise canceller, (d) Output of
twelth-order Wiener noise canceller.

352 OPTIMUM FILTERS

7.2.4 Lattice Representation for the FIR Wiener Filter

In this section, we derive a lattice filter implementation for an FIR Wiener filter. We begin
by noting that the output of the Wiener filter may be written in vector form as follows:

dn) =xT (m)w
where
x(n) = [x(n), x(n=1), ..., x(n— p)]T

and where w is the solution to the Wiener-Hopf equations given in Eq. (7.9). Using the
triangular decomposition for the inverse of R, given by Eq. (5.102)

R;'=A,.D;! A"

where D, = diag{eo, €1,y €pl } is a diagonal matrix of forward prediction errors and
where _
1 at() a2 - ay_(p—1)
0 1 ay(1) - a;_l(P—z)
Ap—l — 0 0 1 s a;_l (p-3) (7.24)
0 0 0 . 1

is the matrix of prediction error filters as defined in Eq. (5.84). Therefore, the output of the
Wiener filter may be written as

d(n) = x" ()R] 'rge = X" (M)A,1D;! AF ry, (7.25)
Recall, however, from Eq. (6.101) that
Al_x(n) =e " (n)

where

e;_l (n)

is the vector of backward prediction errors at time n. With

b=D" A r, (7.26)

it follows therefore, that d(n) = b’e~ (n), i.c.,
p—1
d(n) =) _blk)e; (n) (7.27)
k=0

Therefore, the Wiener estimate d(n) is formed by taking a linear combination of the back-
ward prediction errors using the filter coefficients b(k), as shown in Fig. 7.10. This Wiener
lattice filter, sometimes called joint process estimator, may be viewed as two filters op-
erating jointly. The first is a lattice predictor that transforms the sequence of correlated

THE IR WIENER FILTER 353

x(n)

A

b(0) N
d(n)

Figure 7.10 A lattice filter implementation of an FIR Wiener filter.

input samples, x(n), x(n — 1), ..., x(n — p), into a sequence of uncorrelated backward

prediction errors, ¢, (n), e, (n), ..., e, (n) (see the discussion leading up to Eq. (6.102) in

Section 6.6 in Chapter 6). The second filter, called a multiple regression filter [5] which is
characterized by the weights b(k), uses the backward prediction errors ¢, (n) as inputs to
produce an estimate of the desired signal d(n).

7.3 THE IR WIENER FILTER

Having solved the FIR Wiener filter design problem and having explored a few Wiener
filtering applications, we now consider the design of an IIR digital Wiener filter. As was
the case for an FIR Wiener filter, given a process x (n) our goal is to design a filter h(n)
that produces an output y(n) = x(n) x h(n) that is as close as possible in the mean-square
sense to a desired process, d(r). Although the problem formulation is the same for both the
FIR and the TIR Wiener filters, there is an important difference that significantly changes
the solution. Specifically, for the FIR Wiener filter there are only a finite number of filter
coefficients.that must be determined, whereas for the IIR Wiener filter there are an infinite
number of unknowns, i.e., the values of 4(n) for all n. In this section, we will consider two
cases. First, in Section 7.3.1, we will solve the Wiener filter design problem for the case in
which there are no constraints placed on the solution. What we will find is that the optimum
filter will, in general, be noncausal and therefore unrealizable. Then, in Section 7.3.2, we
will constrain the solution to be causal by forcing h(n) to be zero for n < 0. For the
noncausal Wiener filter, we will find a simple closed form expression for the frequency
response, whereas for the causal Wiener filter, we will only be able to specify the system
function implicitly in terms of a spectral factorization.

7.3.1 Noncausal IR Wiener Filter

For a noncausal (unconstrained) IR Wiener filter, the problem is to find the unit sample
response, h(n), of the IIR filter

HE@) =) hn)z™

n=—00

that minimizes the mean-square error

£ = E{le(n)’} (7.28)

354 OPTIMUM FILTERS

where fz(n) is the difference between the desired process d(n) and the output of the Wiener
filter, d(n),

=]

e(n) =d(n) —d(n) =dn) — Z hDx(n = 1) (7.29)

I=—00

This problem may be solved in exactly the same way that we solved the FIR Wiener filtering
problem, i.e., by differentiating & with respect to 4* (k) for each k and setting the derivatives
equal to zero. Performing this differentiation we have

3
3h* (k)

=—Ele(mx*(n—k)} =0 ; —oco<k<oo

or

E{le(m)x*(n—k)} =0 ; —oo <k <00 (7.30)

Equation (7.30) is referred to as the orthogonality principle, and it is identical to the orthog-
onality principle for the FIR Wiener filter given in Eq. (7.5) except that here the equality
must hold for all k. Substituting Eq. (7.29) for e(n) into Eq. (7.30) and rearranging terms
gives

=]
Y hOE{x(n=Dx*(n -k} = Eldmx*(n—k)} : —co<k<oco (731)
l=—00
Note that the expectation on the left is the autocorrelation of x (n), and the expectation on the

right is the cross-correlation between x (n) and d(n). Therefore, Eq. (7.31) may be written
as

3 hOrk =D =rgk) 5 —oco<k<oo (7.32)

=—00

which are the Wiener-Hopf equations of the noncausal IIR Wiener filter. Comparing the
Wiener-Hopf equations for the FIR Wiener filter and the noncausal IIR Wiener filter,
Eqgs. (7.7) and (7.32), respectively, we see that the only difference is in the limits on the
summation and the range of values for which the equations must hold. Although Eq. (7.32)
corresponds to an infinite set of linear equations with an infinite number of unknowns, find-
ing the solution to these equations is straightforward if we write the left side of the equation
as the convolution of A (k) with r,(k),

h(k) xry(k) = rg (k) (7.33)
In the frequency domain, Eq. (7.33) becomes
H(e/*)Px(e7?) = Pyx(e’®) (7.34)

Therefore, it follows that the frequency response of the IIR Wiener filter is

Pax(e/®)

HE) = 5 oy

(7.35)

THE IIR WIENER FILTER 355

and the system function is

— de (Z)
Py(2)

Note that the denominator of H (z) is a power spectral density, P, (z), and that the numerator,
P, (2), is a cross-power spectral density.

Having found the noncausal IIR Wiener filter, we now evaluate the mean-square error.
Following the steps that were taken for an FIR Wiener filter, we find that the mean-square
error is

H(z) (7.36)

o0
Emin = ra(0) = D h(Dr. () (7.37)
=—00
Note that the only difference between this and the mean-square error for the FIR Wiener
filter given in Eq. (7.11) is in the limits on the summation. Using Parseval’s theorem this
error may be expressed in the frequency domain as follows

b4

Emin = ra(0) — % H(e!*) P} (¢/*)dw (7.38)

Since

1 (7 ;
rqs(0) = E,/. Pi(e’*Ydw

then we also have
1 T .) ,
$min = >— [Pi(e’®) — H(e/*) P (') | dw (7.39)
-7

This error may also be expressed in terms of the complex variable z as follows:

Emin = 7a(0) — % fé H@) P (1/7%77\dz (7.40)

or, equivalently,

1
Emin =) fé [Pi(z) — H(2) P}, (1/2")] 77 'dz (7.41)

where the contour, C, may be taken to be the unit circle. The noncausal Wiener filtering
equations are summarized in Table 7.2.

We conclude this section with a derivation of the Wiener smoothing filter for producing
the minimum mean-square estimate of a process d(n) using the noisy observations

x(n) =dn) + v(n)

for all n. Since the optimum noncausal IIR Wiener filter is given by Eq. (7.35), all that must
be done is to find P, (e/*) and Py, (e/“). Assuming that d(n) and v(r) are uncorrelated zero
mean random processes, the autocorrelation of x(n) is

re(k) = ra(k) +ry(k)
and the power spectrum is

P (e/®) = Py(e’®) + P,(e!®)

356 OPTIMUM FILTERS

Table 7.2 The Frequency Response and Minimum Error
for a Noncausal Wiener Filter

Wiener-Hopf equations)
Py (/%)

HE™) = 3 e

Correlations
re(k) = E{x(m)x*(n — k) }
rax(k) = E{d(n)x*(n — k)}
Minimum error

fmin = 1a(0) = Y hDr}, M)

l=—00

1 [. . A
=5 f [Pa(e’) — H(e'*) P} ()} dw

Furthermore, the cross-correlation, r;, (k), is
rax(k) = E{d(m)x*(n — k)} = E{d(m)d*(n — k)} + E{d(m)v*(n — k)} = ra(k)
Therefore,
Pix(e’®) = Pu(e’®)
and the IIR Wiener smoothing filter is
Py(e”)
Py(el®) + Py(e/®)

Note that for those values of w for which P;(e/?) > P,(e/®), the signal-to-noise ratio is
high and | H (e/“)| ~ 1. Therefore, over those frequency bands where the signal dominates,
the filter passes the process with little attenuation. On the other hand, for those values of
o for which the signal-to-noise ratio is small, P;(e/*) < P,(e/®), the frequency response
is small, | H(e/?)| = 0. Therefore, over those frequency bands where the noise dominates,
H (e/*) is small in order to filter out or suppress the noise. Finally, since

Pir (') = Py(e’®)

H(e'®) = (7.42)

if we evaluate the mean-square error using Eq. (7.39) and use the fact that P, (e/®) is real
we have ‘

b = f_ 7,: [Pae®) — H@*) P,)] do = 5 _:: Pa(@’) [1 - H(*)]do

Substituting Eq. (7.42) for the frequency response of the Wiener smoothing filter we find
that the minimum mean-square error is

1t P, (/) 1t :
P jw —] w
Emin = o _/;,, Py(e)Pd(ef“’) T Pe”) dw 5 _/;,, P,(e/YH(e’!*)Ydw (7.43)

which, if expressed in the z-domain, becomes

Emin = Ly{ P,(2)H(2)z"'dz (7.44)
2nj Je

THE IR WIENER FILTER 357

Example 7.3.1 Noncausal Wiener Smoothing
Let d(n) be a real-valued AR(1) process with power spectrum
b*(0)
(I —az7 (1 —az)
and suppose that d(n) is observed in the presence of zero mean white noise with a variance

2
g,

Pi(z) =

x(n) =d(n)+vn)

Assuming that v(n) is uncorrelated with d(n), we will design a noncausal IIR Wiener
smoothing filter for estimating d(n) from x (n) and find the mean-square error in the esti-
mation of d (n).

From Eq. (7.42) it follows that the system function of the noncausal Wiener smoothing
filter is

_ Pd (Z)
" Pi(2) + Pu(2)

Substituting the given expression for P;(z) into H(z) and setting P,(z) = avz, we have
b2(0)
b2(0) + 62(1 —az=1)(1 —az)

Evaluating the minimum error using Eq. (7.43), with P,(z) = av2 we have the remarkably
simple result

H(z)

H(z) =

1 T . ; 1 T .
Emin = —— / Py(e’*YH(e'")dw = Uuz_/ H(e'”)dw = 62h(0)
2 J_ T J_x

b1
Now consider the specific case in which b*(0) = 0.25, @ = 0.5, and 03 = 0.25. For the
Wiener filter we have
0.25 _ 2(0.2344)
0.25+0.25(1 — 0.5z-1)(1 — 0.5z) (1 —0.2344z~")(1 — 0.2344z7)

Using the z-transform pair

H(z) =

1 —a?

(1 —az7H(l —az)

i

[+4

we have for the unit sample response,
h(n) = 0.4960 (0.2344)"!
which, clearly, is noncausal. For the minimum mean-square error we have
Emin = 02h(0) = (0.25)(0.4960) = 0.1240

Finally, it is interesting to see how much the error is reduced as a result of filtering x(n)
with a Wiener filter. Without a filter, setting d(n) = x(n) the mean-square error is

E{le(m)|*} = E {lv()|*} = 0.25

Thus, the noncausal Wiener filter reduces the mean-square error by approximately a factor
of two.

358 OPTIMUM FILTERS

7.3.2 The Causal IR Wiener Filter

In the previous section, we considered the design of an IIR digital Wiener filter, and placed
no constraints on the form of the solution. In this section, we reconsider the design for the
case in which the Wiener filter is constrained to be causal. For a causal filter, the unit sample
response is zero for n < 0 and the estimate of d(n) takes the form

d(n) = x(n) * h(n) = Z h(k)x(n — k)
k=0

To find the filter coefficients that minimize the mean-square error, we proceed in exactly
the same way that we did for the noncausal Wiener filter. Specifically, differentiating & with
respect to h*(k) for k > 0 and setting the derivatives to zero we find

S hOrk =D =rgk) ; V<k<oo (7.45)
=0

which are the Wiener-Hopf equations for the causal IIR Wiener filter. Note that the only
differences between Egs. (7.32) and (7.45) are in the limits on the summation and the
values of k for which the equations must hold. This restriction on k is important since it
implies that 74, (k) may no longer be expressed as the convolution of (k) and r, (k). As are-
sult, solving Eq. (7.45) for the coefficients A (/) of the Wiener filter is much more difficult than
solving Eq. (7.32).

To solve the Wiener-Hopf equations, we begin by looking at the special case in which
the input to the filter is unit variance white noise, €(n). Denoting the coefficients of the
Wiener filter by g(n), the Wiener-Hopf equations are

Y gWrek =D =ractk) 1 0<k<oo (7.46)
=0

With r. (k) = 8(k), the left side of Eq. (7.46) reduces to g(k). Therefore, g(k) = r (k) for
k > 0 and, since the Wiener filter is causal, g(k) = O for n < 0. Thus, the causal Wiener
filter for a white noise input €(n) is

g(n) =rae(mu(n) (7.47)

where u(n) is the unit step function. We will express this solution in the z-domain as follows:

G@2) = [Pde(Z)]+ (748)

where the subscript “4” is used to indicate the “positive-time part” of the sequence whose
z-transform is contained within the brackets.

In a typical Wiener filtering application, it is unlikely that the input to the Wiener filter
will be white noise. Therefore, suppose that x () is a random process with a rational power
spectrum that has no poles or zeros on the unit circle. We may then perform a spectral
factorization and write P, (z) as follows (see p. 105)

P(2) = 0 Q(2)Q*(1/2*) (7.49)

THE IR WIENER FILTER 359

where Q(z) is minimum phase and of the form
_N@©@)
D(z)

with N(z) and D(z) minimum phase monic polynomials. If x(n) is filtered with a filter
having a system function of the form (see Fig. 7.11)

1
a0 Q(2)

then the power spectrum of the output process, €(n), will be

P(2) = Px(Z)F(Z)F*(l/Z*) =1

0@ =1+q()z7 +q@)z72+---

F(z) = (7.50)

Therefore, € (n) is white noise and F(z) is referred to as a whitening filter. Note that since
Q(z) is minimum phase, then F(z) is stable and causal and has a stable and causal inverse,
F~!(z). As a result, x(n) may be recovered from ¢ (n) by filtering with the inverse filter,
F~!(z). In other words, there is no loss of information in the linear transformation that
produces the white noise process from x ().

With this background, we are now in a position to derive the optimum causal Wiener
filter when the input to the filter x (r) has a rational power spectrum. Let H (z) be the causal
Wiener filter that produces the minimum mean-square estimate of d(n) from x(n), and
suppose that x(n) is filtered with a cascade of three filters, F(z), F~'(z), and H(z) as
shown in Fig. 7.12, where F(z) is the causal whitening filter for x(n) and F~!(z) is the
causal inverse. The cascade

Gz)=F '(2)H({)

is the causal Wiener filter that produces the minimum mean-square estimate of d(n) from the
white noise process €(n). The causality of G (z) follows from the fact that both F~1(z) and
H (z) are causal, The optimality of the filter follows from the observation that if there were
another filter, G’(z), that produced an estimate of d(n) having a smaller mean-square error

x(n)

— F@)=

e(n)

Y

1
00Q(z)

Figure 7.11 A whitening filter that produces white noise
with power spectrum P.(e/”) = 1 when the input, x(n), has
a power spectrum P, (z) = o2 Q(2) Q*(1/z*).

x(n) en) } x(n) L dn)

—] F(2)

A 4
i
~
2]
N
Y
=
_
&
N

Figure 7.12 A causal Wiener filter, G (2), operating on a whitened input, €(n), with H(z) the causal
Wiener filter for estimating d(n) from x(n).

360 OPTIMUM FILTERS

than G(z), then H'(z) = F(z)G’'(z) would produce an estimate of d (n) with a smaller mean-
square error than H(z), the causal Wiener filter. This, however, contradicts the assumed
optimality of H (z).

With € (n) a white noise process, we see from Eq. (7.48) that G(z), the causal IIR Wiener
filter for estimating d(n) from e(n), is G(2) = [P4(z)],. Since €(n) is formed by filtering
x(n) with the whitening filter f(n), then the cross-correlation between d(n) and €(n) is

rack) = E{d(m)e*(n — k)} = E[d(n)[i Fx(m —k — z)]*}
I=—00

> P Oraxtke+1) (7.51)

I=—00

Therefore, the cross-power spectral density, Py (z), is

 Pux(2)
000Q*(1/z%)

and the causal Wiener filter for estimating d (n) from €(n) is

1 [Pu(@
G = — | —— 7.52
@)= [ol /z*)]+ (7.52)

The design is completed by recalling that the causal Wiener filter for estimating d(n) from
x(n) is the cascade of F(z) and G(z),

H(z) = F(z2)G(2)
Thus, combining Eqs. (7.50) and (7.52) leads to the desired solution

L[PaG
Hp — 7.53
©=00 [Q*(l/z*)]+ 753

Psc(2) = Py () F*(1/2%) =

In the case of real processes, h(n) is real and the causal Wiener filter takes the form

1 de(Z)
H = 7.54
@=700 [Q(z")]+ (739

Finally, as with the noncausal 1IR Wiener filter, the mean-square error for the causal IIR
Wiener filter is

Emin = ra©) = Y hOr} Q) (7.55)
=0

where the sum now extends only over the interval 0 </ < co since A(l) =0 for! < 0. In
the frequency domain, this error may be written as

1 T . . .
oo = 3 | [Pale™) = HE) Py (o) do (7.56)
or, equivalently,
1 _
frio = 3 fé [Ps@) — H@)PL(1/2%] 2"z (7.57)

The causal Wiener filtering equations are summarized in Table 7.3.

THE lIR WIENER FILTER 361

Table 7.3 The System Function and Minimum Error for a
Causal Wiener Filter

1 [P
H =
©=700 [Q*(l/z*)]+

System function

Spectral Factorization

P.(2) = 03 Q(2) Q" (1/2")
Minimum error
Emin = ra() = Y_ hOrs, O
1=0
1 T

=5 [Pu(e’) — H(e*) P} (')] do

An interesting interpretation of the causal Wiener filter follows if we compare Eq. (7.53)
to the noncausal Wiener filter given in Eq. (7.36). Denoting the noncausal Wiener filter by
Hp.(z) and using the spectral factorization of P,(z) given in Eq. (7.49), we see that the
noncausal Wiener filter may be written as

P,
Hao(e) = ——t22® (7.58)
0, 0(2)0*(1/z%)
Viewed as a cascade of two filters, the noncausal Wiener filter is
1 Py
Hie2) = — [¢ (Z)*] (7.59)
o, Q) LO*(1/z%)

as shown in Fig. 7.13a. Note that the first filter is the causal whitening filter that generates
the white noise process €(n) from x(n), and the second filter is the noncausal filter that
produces the minimum mean-square estimate of d(n) from the whitened signal. Comparing
Eq. (7.59) to Eq. (7.53), note that the causal IIR Wiener filter shown in Fig. 7.13b is formed
by taking the causal part of [P4, (z)/Q*(1/z*)]. We now look at some applications of causal
Wiener filtering.

7.3.3 Causal Wiener Filtering

In Section 7.3.1, we considered the problem of noncausal Wiener smoothing for esti-
mating a process d(n) from the noisy observations
x(n) =d(n)+v(n)

The system function of the causal Wiener filter for estimating d(n) is given in Eq. (7.53). If
the noise v{n) is uncorrelated with d(n) then P, (z) = P;(z) and the causal Wiener filter
becomes

1 Pi(z)
H = 7.60
©="00 [Q*(l/z*)]+ (7.0

where

P.(z) = Py(2) + P,(2) = 62 Q(2) 0*(1/z") (7.61)

362 OPTIMUM FILTERS

x(n) d(n)
. 1 o Py (2) L

o302 0*(1/2%)

(a) Noncausal Wiener filter.

x(n) d(n)
> 1 > [Pyx(2)] >
o4 Q(2) 0*(1/2) 1,

(b) Causal Wiener filter

Figure 7.13 (a) A noncausal Wiener filter expressed in terms of a cascade of a causal filter
with a noncausal filter. (b) The causal Wiener filter that is formed by taking the causal part
of the noncausal factor in (a).

However, without specific expressions for the power spectral densities Py(z) and P,(z),
Eq. (7.60) cannot be simplified any further. In the following example we design a causal
Wiener filter for estimating an AR(1) process that is measured in white noise.

Example 7.3.2 Causal Wiener Filtering
Suppose that we wish to estimate a signal d(n) from the noisy observation
x(n) =d(n) + v(n)

where v(n) is unit variance white noise that is uncorrelated with d(n). The signal d(n) is
an AR(1) process that is generated by the difference equation

d(n) =0.8d(n — 1) + w(n)

where w(n) is white noise with variance 52 = 0.36. Therefore r, (k) = (0.8)/%I.
To find the optimum causal Wiener filter for estimating d(n) from x(n) we begin by
noting that

Py (z) = Py(2)
P(z) = Py(2) + Py(z) = Py(2) +1
Therefore, with

0.36
(1=0.827")(1 — 0.82)

Py(z) =

the power spectrum of x(n) is

0.36 | =0.527)(1 — 0.57)

P@ =1+ T s na 080 = "0 =08)1 082

THE IIR WIENER FILTER 363
and, since x(n) is real, then P,(z) = 02 Q(2)Q(z™") with
5 (1-05z7")
=16 d == °
7% and 0@ =T "08)

Since the causal Wiener filter is

1 de(z)
H =
@=3700 [Q(z“)]+

then we have

Py(z) 0.36 (1 —0.82)
0z (1-0.8z"1)(1—-0.82) (1 —0.57)
_ 0.36z"
T (1—0.8z"1)(z"! —0.5)
0.6 0.3

1 —0.8z"! + z71 =05

[de(z)] 06
0z M|, 1-08z"

H()_L(I—O.Sz‘l) 06 0375
Y= 16(01-05-1)(1—-082-1) 1—05z"

Therefore,

and the Wiener filter is

Or,

h(n) = 0.375 (1)" u(n)

Since ﬁ(z) = H(z)X(2), the estimate of d(n) may be computed recursively as follows

d(n) =0.5d(n — 1) + 0.375x(n)

Finally, for the niean—square error in the estimate of d(n) we have

o0

fmn = E{[de) —d@]'} = ra0) = 3 hWra) =1-3" (1) 08 = 03750
1=0

1=0

Note that, for the second-order FIR Wiener filter designed in Example 7.2.1, the mean-
square error was &yin = 0.4048. Therefore, using all of the previous observations of x ()
only slightly improves the performance of the Wiener filter. For another comparison, let us
find the noncausal Wiener filter and evaluate the mean-square error. The system function

of the noncausal Wiener filter is

H(z) = Pix(2) _ Py(2) _ 0.36/1.6
" P(@) Pu@ (1-05z7)(1-05z)

364 OPTIMUM FILTERS

and the unit sample response is

hm) = & ()"

Computing the mean-square error we find

Emin=ra@ — > hDreD=1-2) (1) 08 +3 =03
I=—00 k=0

which is smaller, as it should be. Alternatively, as we saw in Example 7.3.2,
&min = r2h(0) = 0.3

as above.

In the previous example we looked at the problem of estimating a process d(n) from
noisy measurements

x(n) =d(n) + v(n) (7.62)
What we found was that if d(n) is generated by the difference equation
dn) =08dn — 1)+ wkh) (7.63)

then the estimate of d(n), when computed recursively, is given by
’ d(n) =0.5d(n — 1) + 0.375x(n)

What is interesting to note is that this recursive estimator may also be rewritten in the form
d(n) =0.8d(n — 1) + 0.375 [x(n) —0.8d(n — 1)] (7.64)

The interpretation of this equation is as follows. The quantity d(n) is the minimum mean-
square estimate of d(n) that is based on all observations of x(n) up to time n. Similarly,
d (n — 1) is the minimum mean-square estimate of d(n — 1) that is formed from all of the
observations of x(n) up to time n — 1. Given d (n — 1), before the next value of x(n) is
observed, we may “predict” what the next value of d(r) should be. In light of Eq. (7.63),
since w(n) is a zero mean process then this estimate should be 0.8d (n — 1). Given that
x(n) = d(n)+v(n) we may then use this prediction to “predict” what the next measurement
should be,

#(n) =08d(n—1)

Finally, with the arrival of the new measurement, x(n), since the prediction will not be
perfect, there will be an error

a(n) = x(n) — x(n)

This error, called the innovations process, represents the “new information” that is brought
with the observation x(n). In other words, «(n) corresponds to that part of x(n) that cannot
be predicted. Therefore, the estimate d(n) is modified by adding a correction, which is the
innovations process after it has been scaled by a gain, K, referred to as the Kalman Gain.
As we will soon discover in Section 7.4, Eq. (7.64) is the steady-state Kalman filter for
estimating the stationary process d(n).

THE IR WIENER FILTER 365

7.3.4 Causal Linear Prediction

In Section 7.2.2, we derived the FIR Wiener filter for linear prediction. In this section, we
look at the design of the optimum causal linear predictor

R+ =) h()x(n—k)
k=0

that produces the best estimate of x(n + 1) given x (k) for all k < n. Since the infinite
past is now being used to predict the next value of x(n), we expect a smaller mean-square
prediction error than for an FIR linear predictor.
For linear prediction, d(n) = x(n + 1) and the cross-correlation between x (n) and d (n)
is
rax(k) = E{d(m)x*(n —k)} = E{x(n + Dx*(n —k)} = ro(k + 1)
Therefore, P,y (z) = zP,(z) and the causal Wiener predictor is

1 ZPx (Z)
H(z) = 7.65
@ =700 [Q*(l/z*)]+ (769
However, since P,(z) = O'OZQ(Z)Q*(I /z*), then Eq. (7.65) may be simplified as follows
1
HO = 5 E Q(z)]+ (7.66)

Now, recall that Q(z) is a monic polynomial
0@ =1+q()z7' +9@z272+ g3z + -
Therefore, the positive-time part of zQ(z) is
[zQ(z)] = [z +q()+g@)z7" +qB)z7*+--]
+ +
gy +q@z" +qB)7 + -
2[ew@ 1] (7.67)
Substituting Eq. (7.67) into Eq. (7.66) the causal linear predictor becomes

H() = ﬁz[Q(z) 1] =<1- ﬁ] (7.68)

Finally, for the minimum mean-square error, we have

1
Emin = I i[Pd(Z) - H(Z)ij(l/z*)]z"dz (7.69)

Since Py(z) = P,(z) and P4, (z) = zP,(z), it follows that the minimum mean-square error
is

Emin = L ?g I:Px(Z) - z"H(z)P;(l/z*)]z"dz
2rj Jo

Using the symmetry of the power spectrum, Py (z) = P*(1/z*), this becomes
1
fmin = —f P@[1 - H@ e 4z
27!'] C

Substituting the system function for the causal Wiener linear predictor, Eq. (7.68), into this

366 OPTIMUM FILTERS

expression yields

1 1
min — T Py 1—{1——— -4
s 2n;7§c (Z){ (Q(z))]z ¢

1 P, (2) —1 1 2 A% wy—1
o Y g, = ¢ 0*(1
2nj Jo Q@) ¢ 2nj cao (1/2°)z"dz

= 0£q(0) (7.70)

Thus, since Q(z) is monic with q(0) = 1 we have the remarkably simple result

Emin = 04 (7.71)

An interesting relationship between the minimum mean-square error and the power spectrum
follows from Eq. (3.103) on p. 105. Specifically,

Emin = €Xp [—217; f_ :: In P, (ej“’)dw} (1.72)

which is known as the Kolmogorov-Szegd formula.
Let us now apply these results to the linear prediction of an autoregressive process. If

x(n) is an AR(p) process with a power spectrum
a3
P.(2) =

O = Toa

where
4
AR =1+ ak)z™*
k=1

is a minimum phase polynomial having all of its roots inside the unit circle, then the optimum
linear predictor is

H@) =2[1- 4] = —a() —a@z™" - ~ a(pz~"*! (1.73)

which is an FIR filter. Therefore, given the entire past history of x(n), only the last p values
of x(n) are used in the prediction of x(n + 1). However, this should not be surprising if we
recall that an AR(p) random process satisfies a difference equation of the form

x(n)=—a(xn—1) —a@x(n —2)—--. —a(p)x(n — p) + w(n)

where w(n) is white noise. Since w(r + 1) cannot be predicted from x (n) or previous values
of x(n) then the best that can be done in predicting x (n + 1) is to use the model for x (n)
and ignore the noise

f(n+1)=—-a)x(n) —a@x(n—-1D - —a(p)x(n—p+1)

This predictor, of course, is the same as the one given in Eq. (7.73).

Example 7.3.3 Causal Linear Prediction for an AR Process
Consider the real-valued AR(2) process

x(n) =09x(n—1)—0.2x(n — 2) + w(n) (7.74)

THE HIR WIENER FILTER 367

| | 1 1 1
0 20 40 60 80 100 120 140 160 180 200

_4 | 1 [l Il | {] 1 I
200 220 240 260 280 300 320 340 360 380 400

(b)

Figure 7.14 Linear prediction of an AR(2) process using an IIR Wiener filter. The process is rep-
resented by the solid line and the prediction by a dotted line. (a) Prediction assuming that the model

parameters are known. (b) Prediction using estimated model parameters.

where w(n) is unit variance zero mean white noise. Since

Py (2) .
)= ————
: A@AGE™Y

where
A(R)=1-09z""+0.2772
then the optimum linear predictor is ‘
H@ =1 - 4@)] = {090 —0.2272] =09 - 0.2
and the prediction of x(n) is formed as follows
X(n+1)=09x@m)—02x(n—1) (7.75)

As a specific example, an AR(2) process x(n) that is generated according to Eq. (7.74)
is shown in Fig. 7.14a. Also shown is the prediction of x(n) using the predictor given in
Eq. (7.75), which has an average squared prediction error of
1§ Nl 5
=— x(n+1)—x(n+ 1| =0.0324
E= ;0 [x(n+ D) — £ +)]
This example, however, is somewhat contrived since, in practice, we cannot expect to
have prior knowledge of the statistics of x(n). Therefore, a more realistic example is the

368 OPTIMUM FILTERS

following. Using the given data, x (n), in Fig. 7.14a we first estimate the AR parameters
using the autocorrelation method. With

N-1

N 1
re(k) = m . x(M)x(n —k)

where N = 200 we find
ro(0) =2.1904, r,(1) =1.5462, and r,(2) = 0.8670
Thus, the normal equations are
[2.1904 1.5462][a(l)] _ _[1.5462]
1.5462 2.1904 a2 |~ 0.8670
Solving for a(1) and a(2) we find
[a(l)] =[-0.8500]
a(2) 0.2042
Therefore, the predictor becomes

x(n+1)=0.85x(n) —02042x(n — 1)

Now, instead of using the predictor on the data that is used to estimate the predictor co-
efficients, we apply the predictor to the next sequence of 200 data values. The results are
shown in Fig. 7.14b and we see that the performance of the predictor is similar to that in
Fig. 7.14a.

In the previous example, we looked at linear prediction for an autoregressive random
process. Although these predictors are FIR filters, as we see in the next example, the Wiener
predictor for an ARMA processes is an IIR filter.

Example 7.3.4 Causal Linear Prediction for an ARMA Process

In this example, we consider the design of the optimum causal linear predictor for a process,
x(n), that has a power spectrum

(1 —0.6z71 +0.36272)(1 — 0.6z + 0.362%)

P = (1—08z-)(1 — 0.82)

The optimum predictor is
1
H(z) =z [l - —]
0(2)
where Q(z) is the minimum phase spectral factor of P,(z). Since
1—0.6z"1+0.36z2

Q@)= [— 081
then the system function of the linear predictor is
1-0.8"" 0.2z7" + 03672
H = l —_ =
(2) =z [1— 06z + 0.36z—2:| ¢ [1 0.6z + O.36z—2:|
0.2+ 0.36z!

1—0.6z"!+0.36z2

THE IIR WIENER FILTER 369

which is an IIR filter. Therefore, the prediction of x(n + 1) is computed using the recursive
equation

t(n+1)=0.6x(n)—-036x(n —1)+0.2x(n) +0.36x(n — 1)

7.3.5 Wiener Deconvolution

We conclude this section on Wiener filtering with a discussion of an extremely difficult and
important problem that arises in many applications. This problem, known as deconvolution,
is concerned with the recovery of a signal d(n) that has been convolved with a filter g(n)
that may not be precisely known,

x(n)=d(n) xgn) (7.76)

Convolutional distortion is often introduced in the process of measuring or recording data.
For example, a camera that is slightly out of focus and a band-limited communication
channel may be modeled as systems that introduce convolutional distortion. In some appli-
cations, convolutional distortion may be inadvertently introduced as would be the case if a
camera were in motion during photographic exposure [1]. If the “blurring” function, g(n),
is known perfectly and if g(n) has an inverse g~!(n) so that

g(n) * g7 (n) = 8(n)

then there is, in theory, no difficulty in recovering d(n) from x(n) since the inverse filter
would perform the desired restoration, i.e.,

d(n) =x(n)x g~ (n) (1.77)
or, in the frequency domain,
o _ X(€?)
D)y = 2—"——
(e’?) G

In practice, however, precise knowledge of g(n) or G(e/®) is generally not available. An-
other problem is that the frequency response, G (e/“), is often equal to zero at one or more
frequencies or is very small over a band of frequencies. This results in either a noninvertible
G (e/®) or one that is ill-conditioned. In addition, since noise is invariably introduced in the
measurement process, a more accurate model for the observed signal would be

x(n) =d(n) x g(n) +wn)
where w(n) is additive noise that is often assumed to be uncorrelated with d(n). In this
case, even if the inverse filter G~!(e/®) exists and is well-behaved, when the inverse filter
is applied to x (n) the restored signal is
W(e/?)
G(e/®)
———’

noise

D(e/®) = D(e/®) + = D(e/®) + V(e/?)

which, in the time domain, becomes
d(n) = dn) + v(n) (7.78)

Thus, d(n) is the sum of the original signal d(n) and a filtered noise term v (). The difficulty
with this solution is that, if G(e/®) &~ 0 over some range of frequencies, then the inverse
filter, 1/ G(e/®), becomes large and the noise w(n) will be amplified.

370 OPTIMUM FILTERS

Another approach to the deconvolution problem is to design a Wiener filter that produces
the minimum mean-square estimate of d(n) from x(n). Thus, let A(rn) be an IIR linear shift-
invariant filter and let d(n) be the estimate of d(n) that is produced by filtering x (n) with
h(n)

diny=x(m)xh(n) =Y _ hD)x(n—1)

=—cc
Note that we are assuming that the filter is noncausal. The filter coefficients h(n) that
minimize the mean-square error

& =E{ld(m) —dm)*)
are the solution to the Wiener-Hopf equations, which, in the frequency domain, becomes
Pux(e7°)

H() = P (e/®)

(7.79)

Therefore, all that needs to be done in the design of H (e/®) is to find the power spectral
densities P;,(e/®) and P, (e/®). Since w(n) is assumed to be uncorrelated with d(n), then
w(n) will also be uncorrelated with d(n) * g(n). As a result, the power spectral density of
x(n) is the sum of the power spectrum of d(n) * g(n) and the power spectrum of w(n),

P (/) = Py(e!®)|G(e/*)|* + Py(e’®) (7.80)
In addition, the cross-power spectral density P, (e/®) is
Py (/) = Pi(e’*)G*(e!*) (7.81)

Therefore, substituting Eqs. (7.80) and (7.81) into Eq. (7.79) we find that the optimum
Wiener filter for deconvolution is given by

Pi(eI)G*(e/?)

HE) = eGP + o)

It is interesting to note that if we assume that there are no values of o for which G(e/)
is equal to zero, and if we factor out the inverse filter 1/G(e/?) from H(e/®), then the
noncausal Wiener filter may be written as

: I Pi(el®)
H(e’*) = - - - - 7.82

©) = Gl [Pd<evw> ¥ Pw(efw>/|G(efw>|2] 752
Since the power spectrum of the filtered noise, v(n), in Eq. (7.78) is

P,(e’®) = P, (e!*)/|G(e/®)|?

it follows that the term in brackets in Eq. (7.82) may be written as
Py(e?)
Py(e/®) + Py(el®)

Therefore, comparing Eq. (7.83) with Eq. (7.42) we see that F (¢/“) is the noncausal TIR
Wiener smoothing filter for estimating d (n) from

F(e/®) =

(7.83)

y(n) =d(n) +v(n) (7.84)

DISCRETE KALMAN FILTER 371

x(n) . , g(n)
> - > F(e/*)y +——tp———
G(e/®)

Figure 7.15 Wiener deconvolution realized as the cascade of an inverse
filter with a smoothing filter F (e/®).

Thus, as shown in Fig. 7.15, the Wiener filter H(e/“) may be viewed as a cascade of the
inverse filter 1/G(e/?) followed by a noncausal Wiener smoothing filter for reducing the
filtered noise. .

7.4 DISCRETE KALMAN FILTER

In Section 7.3.2 we considered the problem of designing a causal Wiener filter to estimate a
process d(n) from a set of noisy observations x(n) = d(n) + v(n). The primary limitation
with the solution that was derived is that it requires that d(n) and x (n) be jointly wide-sense
stationary processes. Since most processes encountered in practice are nonstationary, this
constraint limits the usefulness of the Wiener filter. Therefore, in this section we re-examine
this estimation problem within the context of nonstationary processes and derive what is
known as the discrete Kalman fiiter.

To begin, let us look briefly once again at the causal Wiener filter for estimating a process
x(n) from the noisy measurements®

y(n) =x(n) +vn) (7.85)

In Example 7.3.2 we considered the specific problem of estimating an AR(1) process of the
form*

x(n) =a(Hx(n—-1) + wn)

from

y(n) =x(n) +v(n)

where w(n) and v(n) are uncorrelated white noise processes. What we discovered was that
the optimum linear estimate of x (n), using all of the measurements, y(k), for k < n, could
be computed with a recursion of the form

£0) = a(DE(— 1) + K[y(n) —a(i(n — 1)] (7.86)

where K is a constant, referred to as the Kalman gain, that minimizes the mean-square
error E{|x(n) — %(n)|*}. However, there are two problems with this solution that need to be

3Here we have introduced a slight change in notation in order to be consistent with the notation that is commonly
used in the Kalman filtering literature. Instead of d(n), the signal that is to be estimated will be denoted by x(n)
and the noisy observations denoted by y(n). i

“In the literature on Kalman filtering, the process x (») is usually assumed to be generated according to the difference
equation

x(ny=alyx(n—1)y+wkn-—1)

This difference is not significant, however, since both processes have the same autocorrelation.

372 OPTIMUM FILTERS

addressed. First is the requirement that x(n) and y(rn) be jointly wide-sense stationary pro-
cesses. For example, Eq. (7.86) is not the optimum linear estimate if x (n) is a nonstationary
process, such as the one that is generated by the time-varying difference equation

x(n) =a,_1(Dx(n — 1) + w(n)

Nevertheless, what we will discover is that the optimum estimate may be written as
x(n) = a1 (DX(n—1) + K(n)[y(n) = ap1(Dx(n ~ l)] (7.87)

where K (n) is a suitably chosen (time-varying) gain. The second problem with the Wiener
solution is that it does not allow the filter to be “turned on” at time n = 0. In other words,
implicit in the development of the causal Wiener filter is the assumption that the observations
y(k) are available for all k < n. Again, however, we will find that this problem is addressed
with an estimate of the form given in Eq. (7.87).

Although the discussion above is only concerned with the estimation of an AR(1) process
from noisy measurements, using state variables we may easily extend these results to more
general processes. For example, let x (n) be an AR(p) process that is generated according
to the difference equation

p
x(n) =Y ak)x(n — k) + w(n) (7.88)
k=1
and suppose that x (n) is measured in the presence of additive noise
y(n) = x(n) + v(n) (7.89)
If we let x(r) be the p-dimensional state vector
x(n)
x(n—1)
x(n) = .
x(n—p+1)
then Eqs. (7.88) and (7.89) may be written in terms of x(n) as follows
al) a® --- alp=-1 a(p) 1
1 o - 0 0 0
xmy=| 0 1 - O 0 Ixe-D+| 0 |wmw) (790
0 0 1 0 0
and
y(n)=[1, 0, ..., 0]x(n) + v(n) (7.91)

Using matrix notation to simplify these equations we have
x(n) = Ax(n — 1) + w(n)
y(n) = ' x(n) + v(n) (1.92)

where A is a p X p state transition matrix, w(n) = [w(n), o, ... ,O]T is a vector noise
process, and c is a unit vector of length p. As in Eq. (7.87) for the case of an AR(1) process,

DISCRETE KALMAN FILTER 373

the optimum estimate of the state vector x(n), using all of the measurements up to time n,
may be expressed in the form

R(n) = Ak(n — 1) + K[y(n) — TAR(n — 1)] (1.93)

where K is a Kalman gain vector.

Although only applicable to stationary AR(p) processes, Eq. (7.92) may be easily gen-
eralized to nonstationary processes as follows. Let x(n) be a state vector of dimension p
that evolves according to the difference equation

X(n) =A(n — x(n — 1) + w(n) (7.94)

where A(n — 1) is a time-varying p x p state transition matrix and w(n) is a vector of
zero-mean white noise processes with

w) k=
Efwew k)] =[QO(") | k;é: (7.95)

In addition, let y(n) be a vector of observations that are formed according to

y(n) = C(n)x(n) + v(n) (7.96)

where y(n) is a vector of length ¢, C(n) is a time-varying g X p matrix, and v(n) is a vector
of zero mean white noise processes that are statistically independent of w(n) with

Q) 5 k=n
Efvevim}=1 (7.97)
0 i k#n
Generalizing the result given in Eq. (7.93), we expect the optimum linear estimate of x(n)
to be expressible in the form

R(n) =A@ — DR — 1) + K(n)[y(n) — CmA® — DR(n — 1)]

With the appropriate Kalman gain matrix K(n), this recursion corresponds to the discrete
Kalman filrer. We will now show that the optimum linear recursive estimate of x(n) has this
form and derive the optimum Kalman gain K(n) that minimizes the mean-square estimation
error. In the following discussion it is assumed that A(n), C(n), Q,(n), and Q,(n) are
known. ‘

In our development of the discrete Kalman filter, we will let X(r|n) denote the best
linear estimate of x(n) at time n given the observations y(i) fori = 1,2,...,n, and we
will let X(n|n — 1) denote the best estimate given the observations up to time n — 1. With
e(n|n) and e(n|n — 1) the corresponding state estimation errors,

e(n|n) = x(n) — X(n|n)
e(nln—1) = x(n) —X(nln — 1)
and P(n|n) and P(n|n — 1) the error covariance matrices,
P(n|n) = Ele(nln)e” (n|n)}
P(nln — 1) = Efe(nln — 1)e" (njn — 1)} (7.98)

374 OPTIMUM FILTERS

the problem that we would like to solve is the following. Suppose that matrix we are given
an estimate X(0|0) of the state x(0), and that the error covariance matrix for this estimate,
P(0]0), is known. When the measurement y(1) becomes available the goal is to update x(0|0)
and find the estimate X(1|1) of the state at time n = 1 that minimizes the mean-square error

p—i
£() = E{leIDI?} = (P} =) E{le:1|DI} (7.99)
i=0

After X(1]1) has been determined and the error covariance P(1|1) found, the estimation is
repeated for the next observation y(2). Thus, for each n > 0, given X(n — 1|n — 1) and
P(n— 1|n — 1), when a new observation, y(rn), becomes available, the problem is to find the
minimum mean-square estimate X(n|n) of the state vector x(n). The solution to this problem
will be derived in two steps. First, given ®(n — 1|n — 1) we will find X(n|n — 1), which is
the best estimate of x(n) without the observation y(n). Then, given y(n) and x(n|n — 1) we
will estimate x(n). :

In the first step, since no new measurements are used to estimate x(n), all that is known
is that x(n) evolves according to the state equation

x(n) =AM — Dx(n — 1) + wn)

Since w(n) is a zero mean white noise process (and the values of w(n) are unknown), then
we may predict x(n) as follows,

Xan -1 =Ar-Dxnr —1n—-1) (7.100)

which has an estimation error given by

e(nln — 1) = x(n) — xX(njn — 1)
— At — Dx(n — 1) + w(n) — A(n — DR(— 1|n — 1)
— A(n — e — 1n — 1) + w(n) (7.101)

Note that since w(n) has zero mean, if X(n — 1|n — 1) is an unbiased estimate of x(n — 1),
ie.,

Elen —1n -1} =0
then X(n|n — 1) will be an unbiased estimate of x(n),
Ele(nln—1)} =0

Finally, since the estimation error e(n — 1|n — 1) is uncorrelated with w(n) (a consequence
of the fact that w(n) is a white noise sequence), then

Puln—1)=A(n—1DPn —1jn— DA¥(n — 1) + Q,(n) (7.102)

where Q,,(n) is the covariance matrix for the noise process w(n). This completes the first
step of the Kalman filter.

In the second step we incorporate the new measurement y(») into the estimate X(n|n—1).
A linear estimate of x(n) that is based on X(n|n — 1) and y(n) is of the form

X(n|n) = K'mX(njn — 1) + Kn)y(n) (7.103)

DISCRETE KALMAN FILTER 375

where K(n) and K'(n) are matrices, yet to be specified. The requirement that is imposed on
K(n|n) is that it be unbiased, E {e(n|n)} = 0, and that it minimize the mean-square error,
E{lle(nn)|*}. Using Eq. (7.103) we may express e(n|n) in terms of e(n|n — 1) as follows

e(n|n) = x(n) — K' (W)X(nln — 1) — K(n)y(n)
= x(n) — K’(n)[x(n) —e(nln — 1)] - K(n)[C(n)x(n) + v(n)]
= [1 _K'(n) — K(n)C(n)]x(n) +Kmemn — 1) — Kn)v(n) (7.104)

Since E{v(n)} = 0and E{e(n|n — 1)} = 0, then &(n|n) will be unbiased for any x(n) only
if the term in brackets is zero,

K'(n) =1—-K(n)C(n)
With this constraint, it follows from Eq. (7.103) that X(n|n) has the form
X(n|n) = [I — K(n)C(n)]ﬁ(nIn — 1) + K(n)y(n) (7.105)

or

R(nln) = R(njn — 1) + K(n)[y(n) — C(m)&(nln — 1)] (7.106)

and the error is
e(n|n) = K'(n)e(n|ln — 1) — K(n)v(n)

(7.107)
= [I _ K(n)C(n)]e(nIn — 1) — K(n)v(n)

Since v(n) is uncorrelated with w(n), then v(n) is uncorrelated with x(n) and, therefore, it
is uncorrelated with X(n|n — 1). In addition, since e(n|n — 1) = X(n) — X(n|n — 1), then
v(n) is uncorrelated with e(n|n — 1),

Ele(nln — Dv(n)} =0
Thus, the error covariance matrix for e(n|n) is

P(n|n) = E{e(n|n)e” (n|n)} (7.108)

= [1- KmCm]Pmin — D[I - Km)Cw]” + Km)Q,)K (n) (7.109)

Next, we must find the value for the Kalman gain K(n) that minimizes the mean-square
error :

£(n) = tr{P(n|n)}

This may be accomplished in a couple of different ways. Although requiring some special
matrix differentiation formulas, we will take the most expedient approach of differentiating
&(n) with respect to K(n), setting the derivative to zero, and solving for K(n). Using the
matrix differentiation formulas

d — AH
Rtr(KA) =A (7.110)
and
d—tr(KAKH) =2KA (7.111)

dK

376 OPTIMUM FILTERS

we have
:—Ktr{P(nIn)} = —2[1 - K(n)C(n)]P(nln —DCHo) +2Km)Q,(n) =0 (7.112)

Solving for K(n) gives the desired expression for the Kalman gain,

K(n) =P(n|n — l)CH(n)[C(n)P(nIn - DCH () + Q,,(n):l_I (7.113)

Having found the Kalman gain vector, we may simplify the expression given in Eq. (7.109)
for the error covariance. First, we rewrite the expression for P(n|n) as follows,

P(njn) = [I — K(n)C(n)]P(nln —1
—{[T-Kmcm]pein — HCH () + KmQum JKH (n)

From Eq. (7.112), however, it follows that the second term is equal to zero, which leads to
the desired expression for the error covariance matrix

P(n|n) = [I - K(n)C(n)]P(nln —1 (7.114)

Thus far we have derived the Kalman filtering equations for recursively estimating the
state vector x(n). All that needs to be done to complete the recursion is to determine how the
recursion should be initialized at time n = 0. Since the value of the initial state is unknown,
in the absence of any observed data at time » = 0, the initial estimate is chosen to be

x(010) = E{x(O)}
and, for the initial value for the error covariance matrix, we have
P(0|0) = E{x(0)x" (0)}

This choice for the initial conditions makes x(0]0) an unbiased estimate of x(0) and ensures
that X(n|n) will be unbiased for all n (recall that the Kalman filtering update equations
were derived with the constraint that X(n|n) be unbiased). Thiscompletes the derivation of
the discrete Kalman filter which is summarized in Table 7.4. One interesting property to
note about the Kalman filter is that the Kalman gain K(n) and the error covariance matrix
P(n|n) do not depend on the data x(n). Therefore, it is possible for both of these terms to
be computed off-line prior to any filtering.

Example 7.4.1 Using a Kalman Filter to Estimate an Unknown Constant

Let us consider the problem of estimating the value of an (unknown) constant x given
measurements that are corrupted by uncorrelated, zero mean white noise v(xn) that has a
variance avz. Since the value of x does not change with time », then the state equation is

x(n)=x(n—-1)
The measurement equation, on the other hand, is
y(n) = x(n) + v(n)

Therefore, A(n) = 1, C(n) = 1, Q,(n) = 0, and Q,(n) = 0. Since x(n) is a scalar, the
error covariance is also a scalar and will be denoted by

P(nin) = E{ez(nln)}

DISCRETE KAIMAN FILTER 377

Table 7.4 The Discrete Kalman Filter

State Equation x(n) = A(n — D)x(n — 1) 4+ w(n)
Observation Equation y(n) = C(n)x(n) + v(n)
Initialization: %(0|0) = E{x(0)}
P(0/0) = E{x(0)x" (0)}
Computation: Forn = 1,2, ... compute
XK(nln— 1) =A(n—Dk(n—1n—1)
Pinln— 1) =A(n— DP(n — 1jn — DA#(n — 1) + Q,,(n)

-1
K(n) = P(n|n — 1)C”<n)[C(n)P<n|n — 1)C(n) +Qv(n)]
X(nlm) = R(aln — 1) + Ko y() = CR@nln = n)
P(nln) = [I - K(n)C(n)]P(nIn -1

where e(n|n) = x(n)—x(n|n). FromEq. (7.102) it follows that P (n|n—1)and P(n—1|n—1)
are equal,

Pnn—-1)=Pnr-1n-1)

Therefore, in order to simplify notation we will use P(n — 1) to denote both P(n —1jn— 1)
and P(n|n — 1). From the expression for the Kalman gain in Eq. (7.113) we have

—1
K@) =P(n - 1)[P(n— 1)+a,,2] (7.115)
Thus, from Eq. (7.114) it follows that the update for P (n|n) is
P(n) = [1 - K(n)]P(n ~ 1

= [1- Pn—D Jpen-1
B P(n—1)+o}
_ P(n-— Do?
~ P(n—1)+o?
We may solve this difference equation recursively as follows
P(0)o?
Py = L% ~
PO) +o;
P(1)o}? P(0)s;?
PQ) = ()"v2= oy .
P(l)4+o0% 2P(0)+o0;
pay = F@a__ POy

P22)+062 3P(0)+0?

Thus, for P(n) we have, in general,

P}
P =50 +02

378 OPTIMUM FILTERS

Incorporating this into the expression for the Kalman gain given in Eq. (7.115) we have
Pn—1 P
Ky = _PO=D PO
Pn—1)+o02 nP0)+o0?

Finally, for the discrete Kalman filter we have
P(0) A
o)]
Note that as n — oo then K (n) — 0 and % (n) approaches a steady state value.
There are some special cases of this Kalman filter that are of interest. First, note that if
03 — 00, which implies that the measurements are completely unreliable, then the Kalman
gain goes to zero and the estimate becomes

xn)=xi(n—-1
Thus, the measurements are ignored and £ (n) = x(0), the initial estimate, which has an
error variance P(0). Second, suppose that x(0) = 0 and P(0) —> oo. This corresponds

to the case of no a priori information about x. In this case K(n) = 1/n and the estimate
becomes

x(n)=x(n—1+

n—1

R R 1 . . 1
Em)y =% —-D+=[yn) -t —-1D]= En— 1)+ —=y(n)
n n n

Note, however, that this is simply a recursive implementation of the sample mean,

1 n
Ry =~ yk)
k=1

In the next example, we consider the use of a Kalman filter to solve the filtering problem
considered in Example 7.3.2. As we will see, the Kalman filter is time-varying due to the
fact that, unlike the Wiener filter, the filter begins operation at time n = 0. However, since
the processes are stationary, after the initial transients have died out, the Kalman filter
settles down into its steady-state behavior, which is equivalent to the causal Wiener filter
solution.

Example 7.4.2 Using a Kalman Filter to Estimate an AR(1) Process

Let x(n) be the AR(1) process
x(n) =08x(n — 1) + wn)
where w(n) is white noise with a variance 03) = (.36, and let
y(r) = x(n) + v(n)
be noisy measurements of x (n) where v(n) is unit variance white noise that is uncorrelated

with w(n). Thus, with A(n) = 0.8 and C(n) = 1 the Kalman filter state estimation equation
is

2(n) =0.8%(n — 1) + K(n)[y(n) — 0.82(n — 1]

Since the state vector is a scalar, the equations for computing the Kalman gain are scaler
equations,

Pnln —1) = (0.8)’P(n —1jn — 1) + 0.36
K(n) = P(nln— D[P(nln —1) + 1]‘l
P(nln) = [1 = K(m)]P(nln —1)
With £(0) = E{x(0)} = 0 and P(0|0) = E{|x(0)|?} = 1, the Kalman gain and the

SUMMARY 379

Table 7.5 The Kalman Gain and Error

Covariances

n P(nin—1) K(n) P(n|n)
1 1.0000 0.5000 0.5000
2 0.6800 0.4048 0.4048
3 0.6190 0.3824 0.3824
4 0.6047 0.3768 0.3768
5 0.6012 0.3755 0.3755
6 0.6003 0.3751 0.3751
00 0.6000 0.3750 0.3750

error covariances for the first few values of # are shown in Table 7.5. Note that after a few
iterations the Kalman filter settles down into its steady state solution

dn) = 0.8d(n — 1) +0.375 [x(n) —0.8d(n — 1)]

with a final mean-square error of § = 0.375 which, as we see from our discussion following
Example 7.3.2 (p. 364), is identical to the causal Wiener filter.

The goal of the discrete Kalman filter is to use the measurements, y(n), to estimate the
state x(n) of a dynamic system. The Kalman filter is a remarkably versatile and powerful
recursive estimation algorithm that has found applications in a wide variety of different
areas including spacecraft orbit determination, radar tracking, estimation and prediction
of target trajectories, adaptive equalization of telephone channels, adaptive equalization of
fading dispersive channels, and adaptive antenna arrays. In this section our intent was only
to provide a brief introduction to the problem of recursive estimation. Since a detailed study
on the use, application, and numerical properties of the Kalman filter would fill an entire
textbook, we have only touched upon the problem. A more detailed treatment of the discrete
Kalman filter may be found in many excellent references such as [2,3,5,6]. In addition, some
signal processing applications of Kalman filtering may be found in [4,5,8], and a historical
perspective of Kalman filtering is given in [9] which traces its roots back to the invention
of least squares theory by Gauss in 1809. Finally, an interesting collection of papers on the
theory and application of Kalman filtering may be found in [10].

7.5 SUMMARY

In this chapter, we considered the problem of designing the optimum filter for estimating a
process d(n) in terms of measurements of a related process x (n). The first problem that we
considered was the design of the optimum FIR filter that minimizes the mean-square esti-
mation error § = E{|d(n) — d (n)|*}. Assuming that d(n) and x(n) are jointly wide-sense
stationary processes with known autocorrelation r, (k) and cross-correlation ry, (k), the so-
lution is given by the Wiener-Hopf equations, which are a set of linear Toeplitz equations.
These equations are a generalization of the linear Toeplitz equations derived in Chapter 4 for
all-pole signal modeling and, as we saw in Chapter 5, may be solved using the general Levin-
son recursion. Since the Wiener-Hopf equations apply to the estimation of any process d (n),

380 OPTIMUM FILTERS

we then considered the special cases of filtering, linear prediction, and noise cancellation.
It was then shown how the FIR Wiener filter could be implemented in lattice filter form.

Next, we considered the design of an IIR Wiener filter. Without imposing a causality
constraint on the solution, what we discovered was that these filters are generally noncausal
and, therefore, unrealizable. As a result, these filters would not generally be appropriate in
real-time signal processing applications. Nevertheless, assuming that the power spectrum
of x(n) and the cross-power spectral density between x(n) and d(n) are known, these filters
are easily designed and may be used to set an upper bound on the performance of an FIR
Wiener filter or a causal IIR Wiener filter.

After looking at the use of a noncausal Wiener filter for smoothing, we then considered
the design of a causal IIR Wiener filter. What we found was that, by imposing a causality
constraint on the filter, it becomes necessary to perform a spectral factorization of the power
spectrum of the input process x(n). As a result, compared with the design of an FIR Wiener
filter or a noncausal Wiener filter, these filters are generally much more difficult to design.
We then looked at specific examples of designing causal Wiener filters, including filtering,
linear prediction, and deconvolution.

Finally, we briefly considered the problem of recursive filtering and derived the discrete
Kalman filter. Unlike the Wiener filter, the Kalman filter may by used for nonstationary
processes as well as stationary ones, and may be initialized to begin operating at time
n = 0. The next step is to relax the requirement that the statistics of x(n) and d(n) be
known. This is the subject of Chapter 9.

References

1. H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ,
1977.
2. R. G. Brown, Introduction to Random Signal Analysis and Kalman Filtering, John Wiley & Sons,
New York, 1983.
3. A. Gelb, Ed., Applied Optimal Estimation, M.LT. Press, Cambridge, MA, 1974,
4. D. Godard, “Channel equalization using a Kalman filter for fast data transmission,” IBS J. Res.
Dev., vol. 18, pp. 267273, 1974.
5. S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ, 1986.
6. T. Kailath, “An innovations approach to least-squares estimation — Part I: Linear filtering in
additive noise,” IEEE Trans. Autom. Control, vol. AC-13, pp. 641-655, 1968.
7. R. E. Kalman, “A new approach to linear filtering and prediction problems”, Trans. ASME, J.
Basic Eng., Ser. 82D, pp. 35—45, March 1960.
8. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, Wiley-Interscience, New
York, 1980.
9. H. W. Sorensen, “Least-squares estimation: From Gauss to Kalman,” IEEE Spectrum, vol. 7,
pp. 63-68, July 1970.
10. H. W. Sorensen, ed., Kalman Filtering: Theory and Application, IEEE Press, New York, 1985.
11. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineer-
ing Applications, MIT Press, Cambridge, MA, 1949.

7.6 PROBLEMS

7.1. A random process x(n) is generated as follows
x(n) =ax(n— 1)+ vn)+ pv(n —-1)

where v(n) is white noise with mean m, and variance avz.

PROBLEMS 381

(a) Design a first-order linear predictor
x(n+1) = wOx(n) + wl)x(n — 1)

that minimizes the mean-square error in the prediction of x (n+ 1), and find the minimum
mean-square error.

(b) Now consider a predictor of the form
in+ 1) =c+wOxn) +wDxn—-1)

Find the values for ¢, w(0), and w(1) that minimize the mean-square error, and compare
the mean-square error of this predictor with that found in part (a).

7.2. In this problem we consider the design of a three-step predictor using a first-order filter
W(z) = w(0) + w(l)z™"

In other words, with x(n) the input to the predictor W(z); the output

£(n+3) =w0)x®) +wlx(r - 1)
is the minimum mean-square estimate of x(n + 3).
(a) What are the Wiener-Hopf equations for the Wiener three-step predictor?
(b) If the values of r, (k) for lags k = 0 to k = 4 are

r. =[1.0, 0, 0.1, -0.2, —09]"
solve the Wiener-Hopf equations and find the optimum three-step predictor.
(c¢) Does the prediction error filter
F@)=1+w0)z>+wl)z™?

have minimum phase, i.e., are the zeros of F(z) inside the unit circle? How does this
compare to what you know about the prediction error filter for a one-step predictor?

7.3. Repeat Example 7.2.1 using a second-order Wiener filter, and compare the mean-square
error for the second-order filter with the mean-square error of the first-order filter.

7.4. Consider the system shown in the figure below for estimating a process d(n) from
x(n).

x(n)
> a(l)z™!

If6? = 4 and

r. =[1.0, 05 025]" ; ru=[-10, 1.0]"

find the value of a(1) that minimizes the mean-square error £ = E{le(n)|*}, and find the
minimum mean-square error.

382 OPTIMUM FILTERS

7.5. In this problem we consider linear prediction in a noisy environment. Suppose that a
signal d(n) is corrupted by noise,
x(n) = d(n) + w(n)

where ry, (k) = 0.56(k) and r4,,(k) = 0. The signal d(n) is an AR(1) process that satisfies
the difference equation

d(n) =0.5d(n - 1) + v(n)
where v(n) is white noise with variance o*v2 = 1. Assume that w(n) and v(n) are uncorre-
lated.
(a) Design a first-order FIR linear predictor W(z) = w SO) +w(1)z~! for d(n) and find the
mean-square prediction error £ = E{[d(n + 1) —d(n + 1)}?}.
(b) Design a causal Wiener predictor and compare the mean-square prediction error with
that found in part (a).

7.6. Suppose that a process x (n) has been recorded, but there is a missing gap of data over
the interval [Ny, N;], i.e., x(n) is unknown over this interval.

(a) Derive the optimum estimate of x(N;) using the data in the semi-infinite interval
(—OO, N| - 1]

(b) Derive the optimum estimate of x (N) using the data in the semi-infinite interval [N, +
1, 00).

(c) Derive the optimum estimate of x(/N|) that is formed by combining together the two
estimates found in parts (a) and (b).

(d) Generalize your result in part (c) to find the optimum estimate of x(n) at an arbitrary
point # in the interval [N, N-].

7.7. In this problem we consider the design of a causal IIR Wiener filter for p-step predic-
tion,

Rn+p)y =) h(k)x(n —k)
k=0

(a) If x(n) is a real-valued random process with power spectral density

P(2) =020()Q(z™"

find the system function of the causal Wiener filter that minimizes the mean-square
error

£ =E{IR(n+ p) — x(n + p)I*}
(b) If x(n) is an AR(1) process with power spectrum

1 —a?

(1 —az"1)(1 —az)
find the causal p-step linear predictor and evaluate the mean-square error.

Px(z) =

(¢) If x(n) is an MA(2) process that is generated by the difference equation
x(n) =4v(n) —2vin—1)+vn—2)

where v(n) is zero mean unit variance white noise, find the system function of the
two-step (p = 2) predictor and evaluate the mean-square error.

(d) Repeat part (c).for a three-step predictor.

PROBLEMS 383

7.8. Suppose that we would like to estimate a process d(n) from the noisy observations
x(n) =d@n) + vin)

where the noise, v(n), is uncorrelated with d(n). The power spectral densities of d(n) and
v(n) are shown in the following figure.

} Pa(e’®)

A
@
—7'1 —n/2 /2 n’ .

Py(el®)

.| 5 }4
@
—n —n/4 /4 M

(a) Design a noncausal Wiener smoothing filter for estimating d(n) from x(n),
o0
d(n) = Z h(k)x(n — k)

k=—00

(b) Compute the mean-square error E {|d (n) — d(n) 1} and compare it to the mean-square
error that results when i(n) = §(n), i.e., with no filtering of x(n).

(¢) Design a second-order FIR Wiener filter
W(2) = w0 + w(l)z™ +w@)z™
for estimating d{(n) from x (n), and compare the mean-square error in your estimate to
that found in parts (a) and (b).
7.9. We would like to estimate a process d (n). from noisy observations,
x(n) =d(n) + v(n)

where v(n) is white noise with variance o2 = 1 and d(n) is a wide-sense stationary random
process with the first four values of the autocorrelation sequence given by

r.=[15 0, 1.0, 0]

Assume that d(n) and v{n) are uncorrelated. Our goal is to design an FIR filter to reduce
the noise in d{(n). Hardware constraints, however, limit the filter to only three nonzero

coefficients in W{2).
(a) Derive the optimal three-multiplier causal filter
W(@) = w0 +w)z™ + w@)z™

for estimating d(n), and evaluate the mean-square error E {|d(n) — d(n) 12}.

384 OPTIMUM FILTERS

(b) Repeat part (a) for the noncausal FIR filter
W) = w(-1)z + w(0) + w(l)z™"

(c) Canyousuggestaway to reduce the mean-square error below that obtained for the filters
designed in parts (a) and (b) without using any more than three filter coefficients?

7.10. Suppose that a signal x(n) is recorded and that, due to measurement errors, there
are outliers in the data, i.e., for some values of n there is a large error in the measured
value of x(n). Instead of eliminating these data values, suppose that we perform a minimum
mean-square interpolation as follows. Given a “bad” data value at time n = ng, consider
an estimate for x(ng) of the form

x(no) = ax(no— 1) + bx(ng + 1)

(a) Assuming that x(n) is a wide-sense stationary random process with autocorrelation
sequence r, (k), find the values for a and b that minimize the mean-square error

£ = E{lx(no) — %(no)[*}

(b) Ifr.(k) = (0.5)", evaluate the mean-square error for the interpolator found in part (a).
(c) Discuss when it may be better to use an estimator of the form

x(ng) = ax(ng — 1) + bx(ng — 2)

or explain why such an estimator should not be used.

(d) Given an autocorrelation sequence r(k), derive the Wiener-Hopf equations that define
the optimum filter for interpolating x (n) to produce the best estimate of x(ng) in terms
of the 2 p data values

x(ng—1),x(ng—2),....,x(ng— p) and x(ng+1),x(ng+2),...,x(ng+ p)
(e) Find an expression for the minimum mean-square error for your estimate in part (d).

7.11. Inthis problem we consider the design of an optimum smoothing filter for estimating
a process d(n) from the measurements

x(n) =d(n) + v(n)
Our goal is to use a noncausal FIR filter that has a system function of the form:
2
W)=Y wkz™*
==p
In other words, we want to produce an estimate of d(n) as follows

p
J(n) = Z wk)x(n — k)

k=—p

(a) Derive the Wiener-Hopf equations that define the set of coefficients that minimize the
mean-square error

£ = E{|dn) —dm)|’}

PROBLEMS 385

(b) How would the Wiener-Hopf equations derived in part (a) change if we used a causal
filter with the same number of coefficients? In other words, if the system function were
of the form

2p
W) =) wikyz™
k=0

how would you modify your equations in (a)?

(c) State qualitatively when you might prefer the noncausal filter over the causal filter and
vice versa. For example, for what types of signals and for what types of noise would
you expect a causal filter to be superior to the noncausal filter?

(d) FIR digital filters with linear phase (or zero phase) are important in signal processing
applications where frequency dispersion due to nonlinear phase is harmful. An FIR
filter with zero phase is characterized by the property that

wn) = w(—n)
Thus, the system function may be written as
p
W) =wO) + Y wkz™ +2"]
k=1

Derive the Wiener-Hopf equations that define the optimum zero phase smoothing filter.

(e) With ry(k) = 4(0.5)*! and r, (k) = &(k), find the optimum values for the filter coeffi-
cients w(0) and w(1) in the zero phase filter

W(z) = w() +w(l)[z+2z7"]
7.12. We observe a signal, x(n), in a noisy and reverberant environment, A
yn) =x(n)+08x(n —1)+vn)

where v(n) is white noise with variance 62 = 1 that is uncorrelated with x(n). We know
that x (n) is a wide-sense stationary AR(1) random process with autocorrelation values

r.=[4,2105]

(a) Find the noncausal IIR Wiener filter, H (z), that produces the minimum mean-square
estimate of x(n).

(b) Design a causal IIR Wiener filter, H(z), that produces the minimum mean-square esti-
mate of x(n).

7.13. A wide-sense stationary random process has an autocorrelation sequence of the form
re(k) = sza”‘l

where |¢| < 1. Over a given time interval, [n4, ng], the process x(n) is only known at the
end points, i.e., the only given data is x(n4) and x(nz). Based on these two observations,
determine the optimum estimate

X(n)=am)x(na) +bn)x(ng)

of x(n) over each of the following intervals

386 OPTIMUM FILTERS

@) n > ng.

() n < ny,.

(c) ny <n <ng.

7.14. As shown in Figure 7.12, the Wiener filter may be viewed as a cascade of a whitening

filter with a causal filter that produces the minimum mean-square estimate of d(n) from
€(n). For real processes, the system function of the cascade is

H(z) = F(2)G(2) =

[de(Z)]
olQ@ Lo],

and the mean-square error is
o0
fmin = ra(0) — Y_ h(Drax (1)
=0

@) Ifry.(k) = é(k) and
4
(1-0.5z"H1 —0.52)

find the unit sample response, 2(n), of the causal Wiener filter.

Pi(e!®) =

(b) Derive an expression for the mean-square error that expresses &yin in terms of the
cross-correlation, ry (k), and evaluate the mean-square error when

ractk) = (P uk) + @ *u(—k = 1)
and
E{d*(n)} =4
7.15. Let x(n) be an AR(1) process of the following form
x(n) =a(Dx(n — 1) + bO)w(n)
where w(n) is unit variance white noise, and let y(n) be noisy measurements
y(n) = x(n) + v(n)

where v(n) is unit variance white noise that is uncorrelated with w(n). We have seen that
the causal Wiener filter for estimating x(n) from y(n) has the form

i) =a(Di(n—1) + K[y(n) —a(in — 1)]
Find the value of K in terms of a(1) and #(0) that minimizes the mean-square error
E{[x(n) - £(m]*}

7.16. In the derivation of the Kalman filtering equations, we made use of the following
matrix differentiation formulas

d
and

d o
d—Ktr(KAK) =2KA

