
1

Achieving Strong Secrecy in Discrete Memoryless
Wiretap Channel via Extractors

Shahid Mehraj Shah

Dept. of ECE, IISc Bangalore, India

Email: shahid@ece.iisc.ernet.in

Abstract

This monogram is simply the simplified proof of achievability part of secrecy capacity in stronger sense in [1] and [2].
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I. INTRODUCTION

This paper is just the simple way of re-writing the proof of achievability of secrecy capacity of DM-Wiretap channel in
stronger sense, first proved by Imre Csiszar [2].

A note about the notation: capital letters, like W will denote a random variable and the corresponding small letter w its
realization. An n-length vector (A1, A2, . . . , An)will be denoted as An.

II. SOME PRELIMINARY RESULTS

To prove the main theorem, we need several lemmas. In this section we will simply state those lemmas. The proof of these
lemmas can be found in the appendix.

Lemma 1 (Extractor Lemma): (i) For a PD P on a finite set U and ε > 0, if P (u) ≤ 1/d for each u ∈ U then a randomly
selected mapping π : U → {1, . . . , k} satisfies∣∣∣∣P (π−1(i))− 1

k

∣∣∣∣ ≤ ε

k
, i = 1, . . . , k, (1)

with probability at least
1− 2ke−ε

2d/2k(1+ε). (2)

(ii) The weaker hypothesis P ({u : P (u) ≤ 1/d}) ≥ 1− η still suffices for

k∑
i=1

∣∣∣∣P (π−1(i))− 1

k

∣∣∣∣ ≤ ε

k
≤ ε+ 2η (3)

to hold with probability at least
1− 2ke−ε

2(1−η)d/2k(1+ε). (4)

In particular, if each P in a family P of PDs on U satisfies that hypothesis then a randomly selected π as above will be an
(ε+ 2η)-extractor for the family P with probability at least

1− 2k|P|e−ε
2(1−η)d/2k(1+ε). (5)

Lemma 2 (Secrecy Lemma): Let U, V be random variables with values in finite sets U ,V
1. The hypothesis

PUV

({
(u, v) : PU |V (u|v) ≤

1

d

})
≥ 1− η2, η ≤ 1

3
(6)
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kln(2k|V|) < α2d, α ≤ 1

6
(7)

imply the existence of a mapping π : U → {1, . . . , k} satisfying the security bound

S(π(U)|V ) ≤ (α+ 2η) log(k) + h(α+ η). (8)

with probability at least 1− 2k|V|e−α2d/k.

2. If there exists a set B ⊂ U × V such that

PUV (u, v) <
1

α|B|
when (u, v) ∈ B (9)

PUV (B) ≥ 1− (η2 − α2) (10)

with α ≤ 1/6, η ≤ 1/3, then there exists a mapping π : U → {1, . . . , k} satisfying the security bound (8) provided that

k < min

[
α6 min |Bv|,

1

2|V|
e1/α

]
(11)

Corollary 3: For discrete memoryless multiple source (DMMS) with generic variables (X,Y ) (i) to any δ there exists ξ > 0

such that for k ≤ en[H(X|Y )−δ] a randomly selected mapping pi : Xn → {1, . . . , k} gives

S(π(Xn)|Y n) < e−ξn, d.e.s.; (12)

(ii) Let Z(n) be any random variable jointly distributed with(Xn, Y n) that has at most enr possible values. Then if k ≤
en[H(X|Y )−r−δ], assertion (i) remains valid for S(π(Xn)|Y n, Z(n)).

Lemma 4: Given finite sets X ,Y , and H > 0, δ > 0, for a randomly selected mapping π : Xn → {1, . . . , k} with
1/n log k > H + δ and a suitable decoder mapping φ : Yn × {1, . . . , k} → Xn (depending on π), it holds with probability
approaching unity as n→∞ that, simultaneously for all DMMSs with geniric variables X,Y satisfying H(X|Y ) 6 H ,

Pr {φ(Y n, π(Xn)) 6= Xn} 6 εn, (13)

where εn → 0 exponentially rapidly.
Lemma 5 (Typicality Lemma): It holds, assuming in (iii)-(iv) that n is sufficiently large:

(i)
(ii) ∣∣∣∣− 1

n
logPnX(xn)−H(X)

∣∣∣∣ < τ if xn ∈ T[X]ξ , (14)∣∣∣∣− 1

n
logPnX(xn|zn)−H(X|Z)

∣∣∣∣ < τ if (xn, zn) ∈ T[UX]ξ , (15)

(iii) ∣∣∣∣ 1n log
∣∣T[X]ξ

∣∣−H(X)

∣∣∣∣ < τ (16)∣∣∣∣ 1n log
∣∣T[UX]ξ(z

n)
∣∣−H(X|Z)

∣∣∣∣ < τ if T[UX]ξ(z
n) 6= ∅ (17)

Lemma 6: The probability that in N independent trials an event of probability q occurs less/more than αqN times, according
as α ≷ 1, is bounded above by e−c(α)Nq , where c(α) = αlnα− α+ 1.

Corollary 7A: Consider N = 2nR sequences xni ∈ Xn independently drawn from the distribution PnX .
(i) To any ξ > 0 there exists ρ > 0 such that all but a fraction e−ρn of the sequences xni are ξ− typical, d.e.s.
(ii) If I(X;Y ) < R, to any τ > 0 there exists ζ > 0 such that∣∣∣∣ 1n log

∣∣{i : xni ∈ T[XY ]ζ (y
n)
}∣∣− (R− I(X;Y ))

∣∣∣∣ < τ, d.e.s. (18)
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simultaneously for all yn ∈ Yn with T[XY ]ζ (y
n) 6= ∅.

Corollary 7B: Consider N = 2nR sequences xni ∈ Xn drawn independently from the distribution PnX|U (.|u
n), for given

un ∈ U . The following hold uniformly with respect to the choice of un.
(i) If un is ξ-typical and ζ − ξ, there exists ρ > 0 such that all but a fraction e(−nρ) of the xni are jointly typical with un,
d.e.s.
(ii) If I(X;Y |U) < R, to any τ > 0 there exists σ > 0 such that∣∣∣∣ 1n log

∣∣{i : xni ∈ T[UXY ]σ (u
n, yn)

}∣∣− (R− I(X;Y |U))

∣∣∣∣ < τ, d.e.s. (19)

simultaneously for all yn ∈ Yn with T[UXY ]σ (u
n, yn) 6= ∅, with ζ < σ.

III. STRONG SECRECY

Theorem 1:For wiretap channel, the secrecy capacity achieved is

CS = max [I(X;Y )− I(X;Z)] (20)

in strong sence.
Proof :Let δ > 0 be a fixed small number and we select randomly N = en[I(X;Y )−δ] sequences Xn

i ∈ Xn from the
distribution PnX . It is well known that with high probability, the resulting set U , {Xn

1 , X
n
2 , . . . , X

n
N} is the codeword set of

a code for channel {W1} whose average probability of error is exponentially small.
Let U be a random variable uniformaly distributed on U , and let Y n, Zn be the ourputs of the channels {W1}, {W2}

corresponding to input U . Due to decodability of U from Y n the achievability of R , I(X;Y ) − I(X;Z) (in the stronger
sense) will follow if we prove the existence of a mapping π : U → {1, 2, . . . , k} with 1

n log k arbitrarily close to R s.t.
M = π(U) satisfies the secrecy condition, i.e.

S(M |Zn) = log(M)−H(M |Zn) < ε. (21)

In this case V = Zn, and we apply (ii) part to the set of all jointly ζ-typical pairs (xni , z
n) ∈ U × Zn in the role of B.

Now we know from secrecy lemma part (ii), the set in the lemma B should satisfy property (9). Now from (15) we have

PnX|Z(x
n|zn) < 2−n(H(X|Z)−τ) (22)

Now from (17), we have
H(X|Z) > 1

n
log|B| − τ (23)

Now from (22) and (23) we have

PnX|Z(x
n|zn) < 2−[

1
n log |B|−τ−τ]

=
2−nτ

|B|
(24)

Now we have shown that the condition (9) is satisfied with α = 2−nτ , where τ is arbitrarily small if ζ is. Now we need to
show that (10) is also satisfied. This condition can be equivalently written as PXZ(Bc) is exponentially small, (Ac denotes
complement of set A). To show this consider the following

PU
(
U − T[X]xi

)
=

1

N

∣∣{i : xni /∈ T[X]ζ}
∣∣ (25)

where A−B denotes all the elements that belong to A but not to B. Hence this equation is equivalent to saying that what is
the probability that the codeword sequences are not typical. We know from corollary 7A that (25) is exponentially small for
any ξ > 0, and if xni ∈ U ∩ T[X]ξ , ξ < ζ, then

W2

(
T [XZ]ζ (x

n
i )|xni

)
≤ 2|X ||Z|e−2(ζ−ξ)

2n (26)
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by part (i) of typicality lemma.
Finally, we need a lower bound to |Bv|, i.e., the number of those xni ∈ U which are jointly typical with a given zn in the

projection of B to Zn. As such zn satisfy TXZζ (zn) 6= ∅, corollary 7A applied with Z in the role of Y yields∣∣∣∣ 1n log
∣∣{i : xni ∈ T[XZ]ζ (z

n)}
∣∣− I(X;Y )− δ − I(X;Z)

∣∣∣∣ < τ, d.e.s., (27)

where τ is arbitrarily small if ζ is. This completes the consideration needed to apply part (ii) of Lemma 2 to this scenario,
and it follows that k there can grow with an exponential rate arbitrarily close R = I(X;Y )− I(X;Z), if δ and ζ are small
enough. �

IV. CONCLUSION

In this paper we have achieved secrecy rate equal to the main channel capacity by using previous secret messages as key
for transmitting the current message. This can be done while still retaining strong secrecy.

APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 1

: We fix i ∈ {1, . . . , k} for a random mapping π. Define an indicator random variable as

χ(x) =

1, if π(u) = i

0, otherwise

It is easy to see that χ(u), u ∈ U , are independent, identically distributed (i.i.d.) random variables with Pr{χ(u) = 1} = 1/k.
Next we define following probability distribution as

P (π−1(i)) =
∑
u∈U

P (u)χ(u). (28)

Applying Chernoff bound on (28) we get, for any β > 0.

Pr

{
P (π−1(i)) >

1 + ε

k
>

}
= Pr

{
2(βd

∑
u∈U P (u)χ(u)) > 2(βd

1+ε
k )
}

≤
E
[
2βd

∑
u∈U P (u)χ(u)

]
2βd

1+ε
k

(a)
= 2−βd

1+ε
k E

[∏
u∈U

2βdP (u)χ(u)

]
(b)
= 2−βd

1+ε
k

∏
u∈U

[
E
(
2βdP (u)χ(u)

)]
(c)
= 2−βd

1+ε
k

∏
u∈U

{
Pr{χ(u) = 1}2βdP (u) + Pr{χ(u) = 0}20

}
= 2−βd

1+ε
k

∏
u∈U

{
1

k
2βdP (u) + 1− 1

k

}
= 2−βd

1+ε
k

∏
u∈U

{
1 +

1

k

[
2βdP (u) − 1

]}
. (29)

where (a) follows since U is discrete set, (b) follows because χ(u) are i.i.d. and (c) follows since Pr{χ(u) = 1} = 1/k.
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Now it is by the hypothesis P (u) ≤ 1/d for all u ∈ U , and noting that 2x = eln(2
x) = ex ln 2 we have

2βd(u) − 1 =

∞∑
j=1

(βdP (u) ln 2)j

j!

= βdP (u) ln 2

1 + ∞∑
j=2

(βdP (u) ln 2)j−1

j!


(a)

≤ βdP (u) ln 2

1 + ∞∑
j=2

(β ln 2)j−1

j!


(b)
< βdP (u) ln 2

1 + ∞∑
j=2

1

2
(β ln 2)j−1


(c)
= βdP (u) ln 2

[
1 +

1

2

β ln 2

1− β ln 2

]
= βdP (u) ln 2(1 + β∗), (30)

where
β∗ =

β ln 2

2(1− β ln 2)
(31)

(a) follows from the hypothesis P (u) ≤ 1/d, (b) follows since j! > 2 for j > 2, (c) follows from sum of infinite geometric
series, provided that β∗ ln 2 < 1.

Now we note that the for function f(t) = 1 + t ln 2 − 2t, f
′
(t) = ln 2 − 2t ln 2 and f

′′
(t) = −22t(ln 2)2. Now f ′(t) =

0 ⇒ t = 0 and f
′′
(0) < 0 hence the function f(t) is decreasing, hence for t > 0 f(t) < f(0) hence 1 + t ln 2 < 2t. Now

using this inequality and going back to equation (29) we have

2−βd
1+ε
k

∏
u∈U

{
1 +

1

k

[
2βdP (u) − 1

]}
(a)
< 2−βd

1+ε
k

∏
u∈U

{
1 +

1

k
[βdP (u) ln 2(1 + β∗)]

}
(b)
< 2−βd

1+ε
k

∏
u∈U

2
1
kβdP (u) ln 2(1+β∗)

= 2−βd
1+ε
k 2

∑
u∈U

1
kβdP (u) ln 2(1+β∗)

(c)
= 2−βd

1+ε
k 2βd(1+β

∗)/k = 2−
βd
k (ε−β∗) (32)

Now we let β = ε log e/(1 + ε), whence β∗ = ε log e/(1+ε)
2(1−ε log e/(1+ε)) =

ε log e ln 2
2(1+ε−ε log e ln 2) = ε/2, we finally get

Pr

{
P (π−1(i)) >

1 + ε

k
>

}
≤ 2−

ε2d log e
2k(1+ε) = e−

ε2d
2(1+ε)k (33)

Similarly we have

Pr

{
P (π−1(i)) <

1− ε
k

}
= Pr

{
2−βd

∑
u∈U P (u)χ(u) > 2−βd

1−ε
k

}
≤ 2βd

1−ε
k

∏
u∈U

{
1 +

1

k

[
2−βdP (u) − 1

]}
. (34)
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Now we bound the term 2−βdP (u) − 1 as

2−βdP (u) − 1 =

∞∑
j=1

(−βdP (u) ln 2)+

j!

≤ −βdP (u) ln 2
(
1− 1

2
βdP (u) ln 2

)
≤ −βP (u) ln 2

(
1− 1

2
β ln 2

)
. (35)

Using (35) in (34) we get

Pr

{
P (π−1(i)) <

1− ε
k

}
≤ e−ε

2d/2k (36)

From (33) and (36), we get

Pr

{∣∣∣∣P (π−1(i))− 1

k

∣∣∣∣ ≤ ε

k

}
≥ 1− 2ke−ε

2d/2k(1+ε). (37)

B. Proof of lemma 2 (Secrecy Lemma)

Proof: We define the following set
Gv = {u : PU |V (u|v) ≤ 1/d}. (38)

We have
PUV

({
(u, v) : PU |V (u|v) ≤

1

d

})
=
∑
v∈V

PV (v)PU |V (Gv|v), (39)

Now consider a set
E ,

{
v : PU |V (Gv|v) < 1− η

}
(40)

Now we show that PV (E) < η.
Now as each probability distribution (PD) PU |V (.|v), v /∈ E , satisfies hypothesis (ii) of lemma 1, i.e. the bound in (6), with

arbitrary ε > 0, holds simultaneously for each PU |V (.|v), v /∈ E , in the role of P , at least with probability

1− 2k|V|e−
ε2(1−η)
2(1+ε)

d
k (41)

For convenience we set ε = 2α, α ≤ 1/6, then ε2(1− η)/2(1 + ε) > α2 (if η ≤ 1/3), and thus the final probability is atleast

1− 2k|V|e−α
2d/k. (42)

Now we use lemma 8 to prove the security index bound. The variation distance bound (10) allows us to bound the difference
of (H(π(U)|V = v) from the entropy log k of the uniform distribution, e.g., by lemma 8. We use one more sharper bound of
lemma 9, to obtain for v /∈ E

log k −H(π(U)|V = v) ≤ ε+ 2η

2
log k + h(

ε+ 2η

2
, (43)

where ε = 2α. For v ∈ E we bound the entropy difference trivially by log k. Thus by definition of security index, we get the
required bound.

(ii) Since it is given that B satisfies (9), we have some notations

B
′
, B

⋂
{U × C}, where C ,

{
v : PV (v) ≥

α2|Bv|
|B|

}
. (44)
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Thus for (u, v) ∈ B′ we have

PU |V (u|v) =
PUV (u, v)

PV (v)

≤ (α|B|)−1

α2|Bv|.|B|−1

≤ 1

α3 min|Bv|
(45)

This implies that (6) holds with d = α3 min|Bv|, because PUV (B
′ ≥ PUV (B−PV (C), where PV (C) < α2 due to

∑
v∈V |Bv| =

|B|.
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